Politicum - историко-политический форум


Неакадемично об истории, политике, мировоззрении, своих регионах. Здесь каждый вправе мнить себя пупом Земли!

История астрономии

О истории развития наук и ремесел охватывающей разные временные периоды и разные регионы

История астрономии. Система Птолемея (2)

Новое сообщение ZHAN » 26 дек 2018, 10:10

Человек, смогший настолько продвинуть вперед теорию Луны, естественно, не собирался оставить теории пяти других планет в том же плачевном состоянии, в котором он их нашел. Как будто чтобы еще больше подчеркнуть отличие этих светил с их гораздо более нерегулярными движениями от Солнца и Луны, он всегда говорит о них как о «пяти блуждающих звездах» (οἱ πέντε πλνώμενοι), хотя в Античности более обычным было говорить о семи планетах. Он рассматривает их движение относительно плоскости эклиптики [Или, скорее, плоскости, пересекающей небесную сферу в эклиптике и поворачивающуюся вместе со сферой неподвижных звезд вокруг полюсов эклиптики, чтобы участвовать в прецессии равноденствий, которую в Античности считали движением сферы, а не оси Земли], к которой плоскость деферента каждой планеты наклонена под определенным небольшим углом. Но деферент (в отличие от теории Аполлония) является не концентрическим с Землей, а эксцентрическим, чтобы учитывать зодиакальное неравенство, которое на самом деле вызывает эллиптическая форма орбиты. Эпицикл, на котором планета движется с равномерной скоростью, объясняет аномалию или второе неравенство (стояния и попятные движения). Радиус от центра эпицикла к планете (для Марса, Юпитера и Сатурна) параллелен линии, указывающей на среднее место Солнца, тогда как для Меркурия и Венеры центр эпицикла лежит на этой линии. Как и в системе Аполлония, периоды обращения таковы:
Изображение

Но и при этом теория Аполлония оказывалась недостаточной; Птолемей счел необходимым добавить усложнение, несколько похожее на то, благодаря которому ему удалось закончить свою лунную теорию. Наибольшее расхождение между средним и наблюдаемым местоположением оказалось больше в апогее и меньше в перигее, чем это могло объяснить эксцентрическое движение, таким образом центр расстояний должен быть ближе к Земле, чем центр равномерного движения. Поэтому он ввел точку экванта, расположенную на линии апсид, таким образом мы имеем следующий порядок: земля (7) – центр деферента (С) – эквант (Е). Птолемей обнаружил, что наибольшее соответствие наблюдениям обеспечивается при ТС = СЕ. Точка Е в планетной теории не имела прямого отношения к движению на эпицикле; но линия от экванта до центра эпицикла двигалась так, что описывала равные углы за равные промежутки времени. Поэтому точка Е была центром равного движения, а С — центром равных расстояний. Но и этого было недостаточно для планеты Меркурий, у которого центр движения (Е) находился между Землей и центром деферента, с расстоянием от второго до первого равным 1/20 радиуса деферента, но центр деферента не стоит неподвижным, а, напротив, описывает небольшой круг с радиусом 1/21 в направлении с востока на запад вокруг точки (С), удаленной на 1/21 от Е, за тот же период, за который центр эпицикла обходит вокруг деферента [То есть в соответствии с античной системой записи; согласно современным способам отсчета аномалии от фиксированной точки в зодиаке, для внутренних планет это был бы их гелиоцентрический период, а для внешних – сидерический год].

Наклоны планетных орбит к эклиптике настолько малы, что Птолемей в своих теориях движения по долготе посчитал допустимым пренебречь отклонениями от эклиптики. Но сами широты дали ему достаточно хлопот, и он, по-видимому, нашел, что эту часть очень сложно привести в удовлетворительный порядок (кн. XIII). Для трех внешних планет он предположил, что деферент наклонен к плоскости эклиптики под углом 1° для Марса, 1°30′ для Юпитера и 2°30′ для Сатурна. Для Марса линия апсид деферента перпендикулярна линии узлов, так что она совпадает с линией, соединяющей точки наибольшей северной и южной широты; для Юпитера – 20° к западу, а для Сатурна – 50° к востоку от линии наибольшей широты. Апогеи во всех трех случаях находятся к северу от эклиптики. Но эпициклы, в свою очередь, наклонены под тем же углом к плоскости дифферентов, так что их плоскости всегда параллельны плоскости эклиптики.

Птолемей пришел к этому предположению, заметив, что в апогее и перигее деферента широта (южная и северная соответственно) достигает наибольшего значения, когда планета оказывается в перигее своего эпицикла. Так как эпицикл внешней планеты является не чем иным, как годовой орбитой Земли вокруг Солнца, перенесенной на рассматриваемую планету, конечно, он был совершенно прав в том, что эпицикл должен быть параллелен плоскости эклиптики. Оставаясь таким образом параллельным некоей плоскости, эпицикл с античной точки зрения вел себя необычно, [«Гипотезы». За исключением Меркурия, расстояние ТЕ, выраженное в долях радиуса деферента, практически равно удвоенному эксцентриситету в эллиптической теории. В случае Венеры оно слишком велико, 1/24 = 0,0417, а не 0,0137] поскольку считалось естественным, что плоскость эпицикла должна находиться под тем же углом к радиусу, соединяющему центр деферента с центром эпицикла. Поэтому гипотеза требовала введения небольшого вспомогательного круга, плоскость которого была бы перпендикулярна к плоскости деферента, а центр лежал бы в плоскости последнего и который совершал бы оборот в зодиакальный период планеты (XIII, 2). Если представить себе стержень на окружности этого круга, который входит в прорезь на эпицикле, можно понять, каким образом эпицикл остается параллельным эклиптике. Это позволяет более-менее объяснить разницу наибольших широт, но, видимо, Птолемея такое совпадение не удовлетворило, так как потом он, похоже, счел необходимым изменить наклоны эпициклов соответственно на 2°15′, 2°30′ и 4°30′ [По крайней мере, эти данные указаны в «Надписи»], причем диаметр эпицикла, перпендикулярный к линии перигея-апогея, всегда параллелен плоскости эклиптики.

Меркурий и Венера потребовали совсем иного подхода. На рисунке А — апогей, а Р — перигей деферента; NN′ – линия узлов, или линия пересечения плоскостей деферента и эклиптики. Угол между ними очень мал, 10′ для Венеры и 45′ для Меркурия [В «Гипотезах» указано 10′ для обеих планет], а плоскость деферента колеблется в этих пределах в обе стороны от эклиптики, совпадающей с плоскостью деферента, когда центр эпицикла приходится на N или N′.
Изображение

Что касается эпицикла, то его линия апсид ab падает на плоскость деферента в А и Р, тогда как диаметр cd, находящийся под прямым углом к ней, наклонен к этой плоскости под углом, который назван λόξωσις (обликвация). В узлах NN′ диаметр cd падает на плоскость эклиптики, а ab наклонен к деференту. Этот наклон эпицикла называется ἔγκλισις и равен нулю в точках А и Р. В случае Меркурия планета в апогее находится к югу от эклиптики, а Венеры (и всех других планет) – к северу от нее. Следовательно, когда эпицикл Венеры находится в N′ (восходящий узел), деферент лежит в плоскости эклиптики; по мере продвижения эпицикла точка А поднимается к северу от эклиптики и продолжает подниматься, пока эпицикл не достигнет А. После этого широта уменьшается, пока не становится равной нулю в N, но после этого часть NPN’ поднимается к северу от эклиптики, унося эпицикл с собой, так что центр последнего всегда находится на северной широте, за исключением точек N и N′. В то же время происходит двойное колебание эпицикла, как у корабля при одновременной килевой и бортовой качке. У Меркурия все наоборот относительно севера и юга, а в остальном теория такая же.

То, что Птолемей нашел широты планет крайне хлопотным делом, ничуть не странно, если вспомнить, что на самом деле их линии узлов проходят через Солнце, в то время как Птолемею пришлось исходить из допущения, что они проходят через Землю. Поскольку внутренние планеты практически окружены орбитой Земли, также вполне естественно, что их движения по широте казались более сложными. Фундаментальная ошибка системы Птолемея не вызвала столько трудностей ни в одной другой части планетной теории, как в объяснении широт, и они оставались основным камнем преткновения вплоть до эпохи Кеплера [Насколько теория широт не удовлетворяла самого Птолемея, следует из того факта, что в своем трактате «Гипотезы планет» он ни словом не упоминает двойного колебания эпицикла и не говорит об обликвации диаметра cd. Но в «Надписи», где приводятся только числовые данные без объяснений, он указывает следующие значения: Венера: наклон деферента 10′, эпицикла 2°30′, обликвация (λόξωσις) 2°30′; Меркурий: 45′, 6°15′ и 2°30′].

Невозможно отрицать, что система в целом заслуживает нашего восхищения как готовый способ составления таблиц движения Солнца, Луны и планет. С геометрической точки зрения она почти во всех подробностях (за исключением вариаций расстояния до Луны) представляла эти движения почти так же верно, как наблюдения при помощи простых инструментов того времени, и является вечным памятником великим математическим умам, разрабатывавшим ее с таким упорством. Из многих слов не только самого Птолемея, но и его комментаторов следует, что они всего лишь считали многочисленные круги удобным способом расчета местоположения планет и в действительности система весьма похожа на разложение в ряд синусов или косинусов кратных средней аномалии. Птолемей обычно начинает теорию какой-либо части планетного движения со слов «представим себе (νοείσθω)… круг», а во введении к своим «Гипотезам» он говорит:
«Я не утверждаю, что могу сразу объяснить все движения; но я покажу, что каждое само по себе прекрасно объясняется своей собственной гипотезой».
А Прокл в конце своего комментария открыто говорит, что эпициклы и эксцентры предназначены всего лишь для того, чтобы наиболее простым способом объяснить движения и показать существующую между ними гармонию. Факт (на который Гиппарх и Птолемей не могли не обратить внимания), что их лунная теория требует чрезмерных изменений расстояния до Луны и тем самым ее видимого диаметра, чего в действительности не происходит, показывает, что они видели в своей работе не систему действительного мироустройства, но всего лишь вспомогательное средство для вычислений. В силу состояния алгебры в ту эпоху их приходилось производить геометрически, как и Евклиду пришлось удовольствоваться геометрическим представлением в вопросах иррациональных величин или теории пропорций.

Современному уму, привыкшему к гелиоцентрической идее, трудно понять, почему такому математику, как Птолемей, не пришло в голову лишить все внешние планеты их эпициклов, раз они не служили никакой иной цели, кроме воспроизведения годовой орбиты Земли, переданной на каждую из этих планет, а также лишить Меркурий и Венеру их деферентов и поместить центры их эпициклов на Солнце, как сделал Гераклит. Фактически мы могли бы воспроизвести установленные Птолемеем значения отношений радиусов эпицикла и деферента на основе большой полуоси каждой планеты, выраженные в полуосях Земли, как показано в следующей таблице:
Изображение

Очевидно, что гелиоцентрическая идея Аристарха могла с тем же успехом возникнуть из теории эпициклов, как и из теории подвижных эксцентров, и, если бы мы не располагали некоторыми данными в пользу старшинства первой из двух теорий, мы не могли бы сказать, какая из них послужила отправной точкой для Аристарха. Но в связи с любопытной зависимостью всех планет от Солнца в системе Птолемея мы уже упоминали, что зодиакальное неравенство движения планет показывает, что в любом случае простое круговое движение не может «спасти явления»; при этом открытие ярко выраженной неправильности движения Луны, зависящей от ее положения относительно Солнца, подтвердило мнение, что Солнце одинаково замешано в теориях всех небесных тел.

Хотя система Птолемея была лишь геометрическим представлением небесных движений и не претендовала на изображение истинной картины реального мироустройства, невозможно обойтись без нее в нашем обзоре космических систем, прежде всего в силу ее огромной исторической важности. В течение более чем четырнадцати столетий она оставалась альфой и омегой теоретической астрономии, и, какие бы ни складывались мнения об устройстве мира, система Птолемея почти повсеместно считалась фундаментом астрономической науки.

Помимо полной теории движения планет, великий труд Птолемея содержит и каталог звезд, который, однако, представляет собой не что иное, как каталог Гиппарха, сохранивший с его времен ошибочное значение постоянной прецессии. Гиппарх [По крайней мере, у нас нет никаких достоверных свидетельств того, что о ней было известно вавилонянам, хотя, по-видимому, они знали, что точка равноденствия, определенная намного раньше, требует некоторых поправок, потому что три таблички указывают разные точки равноденствия – 10°, 8°15′ и 8°0′30″ Овна] открыл прецессию равноденствий, сравнив определенные им самим долготы для некоторых звезд с их долготами у Тимохариса, определенными примерно на 150 лет раньше. Уже в своей более ранней работе о продолжительности года он заявлял, что это смещение должно составлять по меньшей мере градус на сто лет («Синтаксис», VII, 2), но в своей последующей работе «О смещении точек солнцестояния и равноденствия» он говорит, что Спика, по его наблюдениям, находится в 6° от осеннего равноденствия, тогда как у Тимохариса это расстояние составляет 8°. Тимохарис наблюдал Спику в 294 и 283 годах до н. э. (VII, 3), а Гиппарх наблюдал ее в 129 году, таким образом изменение составило 45″ или 46″ в год [Любопытно, что сам Птолемей (там же) на основе двух соединений Спики и Луны, наблюдавшихся Тимохарисом, приходит к выводу, что долгота звезды изменилась на 10′ в интервале (почти) 12 лет, то есть на 50″в год].

Значения, принятые Гиппархом для тропического и сидерического года, также указывают на то, что он исходил из указанной величины. Птолемей, однако, сравнивая найденные Тимохарисом и Гиппархом долготы четырех звезд с теми, которые определили Агриппа и Менелай в 93 и 98 годах н. э., нашел смещение на 36″ за год, или на 1° за 100 лет, и принял это удобное и круглое число. Весьма примечательно, что такое важное открытие не стало общеизвестным и мы не находим упоминаний о прецессии ни у Гемина, ни у Клеомеда, ни у Теона Смирнского, Манилия, Плиния, Цензорина, Ахилла, Халкидия, Макробия или Марциана Капеллы! Единственные авторы, которые говорят о ней, за исключением Птолемея, – это Прокл [«Гипотезы», а также комментарий к «Тимею», с. 277 d – 278 а. Авторитет неоплатоника Юлиана и подобных ему для Прокла гораздо больше, чем авторитет Гиппарха и Птолемея. Он полагает, что Птолемей ввел прецессию, чтобы объяснить сидерические периоды обращения планет, и утверждает, что те, кто ею не пользуется, например вавилоняне, гораздо лучше объясняют наблюдаемые явления. Он также отрицает, что прецессия является причиной, почему до его эпохи приполярные звезды проходили ниже горизонта], который категорически отрицает ее существование, и Теон Александрийский, который принимает птолемеевское значение 1° за 100 лет, но рассказывает об этом вот такую странную историю:
«По мнению некоторых, древние астрологи полагали, что с некой эпохи точки солнцестояний сдвигаются на 8° по порядку знаков, после чего возвращаются на то же расстояние; но Птолемей был не такого мнения, так как без введения этого смещения в расчеты они, если делаются по таблицам, всегда согласны с наблюдаемыми местами. Поэтому мы также советуем не использовать эту поправку, но все же объясним ее. Допустим, что за 128 лет до правления Августа произошло наибольшее смещение вперед, а именно на 8°, звезды начали двигаться назад; к 128 годам, истекшим до Августа, прибавим 313 лет до Диоклетиана и 77 лет после него и возьмем одну восьмую часть от суммы (518), так как за 80 лет происходит смещение на Г. Доля (6°28′30″), вычтенная из 8°, даст величину, на которую точки солнцестояния окажутся впереди таблиц».
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Система Птолемея (3)

Новое сообщение ZHAN » 27 дек 2018, 11:47

Единственный древний автор, который упоминает об этой теории, – это Прокл, и он всего лишь говорит, что точки тропиков, по мнению некоторых, не совершают полный круг, а движутся на несколько градусов взад-вперед («Гипотезы»).

Таким образом, по мысли этих людей, долгота звезды увеличивалась в течение 640 лет (на 1° за 80 лет), а затем вдруг стала уменьшаться и продолжала делать это в течение еще 640 лет, а затем столь же внезапно снова стала расти. Эти добрые люди, видимо, жили прежде Птолемея, так как он с ними не согласен (и так как Теон называет их παλαιοί), но при этом позже Гиппарха, так как они что-то знали о прецессии и исходили из ее значения 45″ в год.

Но что навело их на эту необычную мысль? И почему они относят перемену направления к 158 году до н. э.; и почему длина дуги составляет 8°? :unknown:

На все эти вопросы трудно ответить. Вероятно, к этому году они относят начало астрономических трудов Гиппарха, и единственное, что связывает с Гиппархом смещение равноденствий и солнцестояний на 8°, – это то, что он наконец-то поместил начало знаков Овна, Рака, Весов (клешней Скорпиона) и Козерога в точки равноденствия и солнцестояния, как это делал Арат, тогда как Евдокс и другие помещали эти точки в середине или восьмом градусе этих знаков [По Евдоксу, гелиакический восход Сириуса совпадает с входом Солнца в созвездие Льва, причем солнцестояние приходится на восьмой градус Рака].

При этом они следовали примеру вавилонян, у которых эклиптика была неподвижной и определялась созвездиями.

Кутлер обнаружил, что равноденствие у них находилось в 8°15′ Овна, а долготы новолуния в среднем на 3°14′ больше, так что начала знаков вавилонской эклиптики соответствуют примерно пятому градусу знаков нашей подвижной эклиптики.

Много лет спустя Плиний по-прежнему указывает, что восьмой градус совпадает с равноденствиями и тропиками, а Манилий (III, 676) и Ахилл (с. 23) говорят, что одни авторы помещают их в начале знаков, другие – в восьмом градусе, третьи – в десятом или двенадцатом. Возможно, некоторые невежественные авторы по недоразумению заключили из этого разночтения, что равноденствие колеблется взад-вперед, и таким образом положили начало теории об изменчивости прецессии, которая вследствие плачевного состояния или, вернее, отсутствия практической астрономии на протяжении многих веков после Птолемея упрочилась, распространилась в Индии и среди арабов и не была окончательно отметена до тех пор, пока на сцену не вышел Тихо Браге.

Птолемей не только не разделяет этой ошибки, он ни разу нигде на нее не ссылается. Для него прецессия – просто медленное вращение сферы неподвижных звезд с запада на восток вокруг полюсов зодиака, происходящее за 36 000 лет. Едва ли можно сомневаться в том, что Гиппарх был того же мнения. Правда, он назвал свой трактат не «О смещении неподвижных звезд», а «О смещении (μετάπτωσις) точек солнцестояния и равноденствия», и, по словам Птолемея («Синтаксис», VII, 2), он говорил в своей книге о продолжительности года, что тропики и равноденствия «по этой причине перемещаются к западу», но Птолемей умалчивает о том, что Гиппарх расходится с ним во мнении, и в двух других местах (III, 1 и VII, 1) четко говорит, что Гиппарх высказал гипотезу о медленном вращении сферы в том же направлении, в котором движутся планеты. Кроме того, хорошо известно, что Гиппарх сначала приписывал смещение на восток лишь нескольким зодиакальным звездам, долготы которых, как он обнаружил, увеличились, хотя вскоре он понял, что это смещение общее для всех звезд.

Птолемей был последним великим астрономом александрийской школы. За ним последовали несколько выдающихся математиков, такие как Папп и Диофант, но они ничего не прибавили к накопленным астрономическим знаниям. Труды Птолемея по-прежнему преподавали в школах; Теон Александрийский написал к ним ценный комментарий, но он, пожалуй, был последним ученым человеком, который имел возможность пользоваться прославленной библиотекой, ведь она погибла при его жизни от рук толпы разъяренных христиан города (в 389 г. н. э.). Его знаменитая дочь Гипатия, которая по праву считается олицетворением высших достижений греческой культуры и мысли, была по этой самой причине варварски растерзана несколько лет спустя (в 415 г.), и занавес навсегда опустился над грандиозной сценой, где греческая наука играла свою роль так ярко и так долго.

В Греции еще была жива неоплатоническая школа и даже дала человечеству последнего выдающегося философа – Прокла, после смерти которого она еще полвека влачила жалкое существование, пока император Юстиниан не закрыл ее в 529 году. В компании с шестью другими философами Симпликий (впоследствии написавший сложный комментарий к Аристотелю, на который мы часто ссылаемся) искал убежище в Персии, пребывая в заблуждении, что они найдут там непредвзятых правителей и свободу, чтобы учить; но их ждало разочарование, они вернулись домой через несколько лет и обнаружили, что нигде в известных частях мира мудрость прошлого уже не пользуется никаким уважением. Над миром спустилась долгая, темная ночь Средних веков.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Средневековая космология

Новое сообщение ZHAN » 28 дек 2018, 10:50

Римская империя была разрушена в течение ста лет после того памятного года (375 г. н. э.), когда гунны вторглись в Европу через естественные врата между Каспийским морем и Уральскими горами и в безудержном марше прогнали готские и германские народы перед собой через большинство провинций Римской империи. В 476 году последний номинальный император Запада был свергнут варварским вождем; завоеватели разделили между собой часть Европы, образовывавшую Западную империю; повсюду царили разорение и опустошение. Казалось, наступил конец всякой цивилизации, ведь завоеватели остались совершенно не затронуты ни древней культурой Азии, ни какими бы то ни было знаниями из того, чему они могли бы научиться от своих новых подданных. В какой-то степени их дикое государство, конечно, было смягчено христианской религией, которую они постепенно переняли; но большинство их учителей, к несчастью, не испытывали ни капли сочувствия ни к чему исходившему из языческого мира греков и римлян; и только умирающей неоплатонической школе и языческим комментаторам, таким как Макробий и Симпликий и автор-энциклопедист Марциан Капелла, выпало на долю еще недолго поддерживать жизнь в традициях прошлого.

Но еще до того, как внешний враг пошел в наступление на Римскую империю, на греческую мысль уже обрушился свирепый натиск внутреннего врага. Главы церкви настаивали на узколобом, буквальном толковании каждого слога из Писания и с ужасом и презрением отвергали все, что нельзя было с ним примирить. Таким образом некоторые Отцы Церкви способствовали тому, что варварам удалось на тысячу лет повернуть время вспять, и прошли столетия, прежде чем человечество смогло хоть в какой-то мере исправить последствия их пагубных усилий и мысль начала освобождаться от оков, заключивших ее в дни, когда близился распад Древнего мира. Ни в одной другой отрасли знаний желание уничтожить все плоды греческой науки не проявилось столь ярко, как в отношении доктрин о форме Земли и движении планет. Перелистывая труды некоторых Отцов Церкви, нетрудно вообразить себе, что читаешь рассуждения каких-нибудь вавилонских жрецов, записанные за несколько тысяч лет до христианской эры; идеи точно те же, с той лишь разницей, что древневавилонский жрец не имел способов установить истину и не стал бы отвергать ее, если бы установил в результате астрономических наблюдений.
Изображение

Сначала последователи апостолов не проявляли вражды к науке. Епископ Римский Климент I в своем послании к коринфянам, написанном около 96 года н. э., мимоходом упоминает об антиподах, живущих в части Земли, к которой никто от нас не может дойти и из которой никто не может дойти до нас; в начале той же главы он использует выражение, часто встречающееся в классических сочинениях, что
«Солнце, Луна и танцующие звезды (ἀστέρων τε χοποί)по Божьему велению кружат в согласии, не уклоняясь от назначенных им пределов».
В Александрии, где вожди христиан были знакомы с философскими рассуждениями Филона и неоплатоников, вполне естественно, что они не испытывали желания противопоставлять себя науке. Климент Александрийский (около 200 г. до н. э.), начинавший жизнь язычником, фактически первым взглянул на скинию и ее убранство как на аллегорическое представление всего мира, но это не сбило его с пути и не заставило отмести знания, полученные от греков. В южной части алтаря помещается лампада, показывающая движение семи планет, а средний светильник и три ответвления по обе ее стороны означают Солнце, проливающее свет на планеты. Золотые фигуры, каждая из которых имеет по шесть крыльев, изображают или Большую и Малую Медведицу, или, что более вероятно (по его мнению), два полушария, а ковчег, как он считает, обозначает Восьмерицу и умопостигаемый космос или Бога («Строматы», кн. 5, VI).

Это стремление найти в Писании аллегорию дошло до крайности у Оригена (185—254), который был так же связан с александрийской школой мысли, и ему таким образом удалось избавиться от всего, что нельзя было привести в соответствие с языческим знанием, например с отделением воды, которая под твердью, от воды, которая над твердью, упомянутым в Книге Бытия, которое, по его мысли, обозначает, что мы должны отделить наш дух от бездны мрака, где обитает Враг со своими ангелами (гомилия на Бытие).

Однако подобного рода поучения пришлись не по вкусу тем, кто не хотел иметь ничего общего с чем бы то ни было из дохристианского мира и для кого даже «добродетели язычников суть блестящие пороки». Типичным представителем таких людей был Лактанций, первый и наихудший из противников шарообразности Земли, чьи семь книг о «Божественных установлениях» написаны, по-видимому, между 302 и 323 годами н. э. В третьей книге, озаглавленной «О ложной мудрости философов», 24-я глава посвящена насмешкам над доктриной шарообразной формы Земли и существования антиподов. Здесь нет необходимости вдаваться в подробности его рассуждений об абсурдности веры в то, что существуют люди, ходящие вверх ногами, и в места, где дождь, град и снег падают вверх, и чудо света – висячие сады – меркнет по сравнению с полями, морями, городами и горами, висящими, по мнению философов, без всякой опоры. Он отметает аргумент мыслителей о том, что тяжелые тела стремятся к центру Земли, как недостойный даже серьезного рассмотрения, и прибавляет, что легко мог бы доказать множеством аргументов, что невозможно для небес быть ниже Земли, но не станет, так как почти подошел к концу своей книги и ему достаточно было перечислить лишь некоторые ложные доводы, из которых вполне можно себе представить качество остальных.

Более умеренных взглядов придерживался Василий, прозванный Великим, который написал пространное сочинение о шести днях творения около 360 года. Он не обрушивается с яростью на воззрения философов, как Лактанций; видимо, Василий был знаком с трудами Аристотеля и в целом выражался с известной мерой сдержанности и осторожности. Так, он знает, что существуют звезды около южного небесного полюса, невидимые для нас, и прекрасно понимает, что лето и зима зависят от движения Солнца по северной и южной половине зодиака («Беседы на Шестоднев», I, 4). Рассуждая о двух «великих светильниках», он говорит, что в действительности они имеют огромный размер, так как их видимая величина не изменяется, из какой части Земли на них ни смотреть; никто не находится ближе к Солнцу или дальше от него, будь то во время восхода, зенита или заката; а кроме того, Солнце освещает всю землю, в то время как остальные звезды дают лишь слабый свет (VI, 9—10). Но, даже зная о годовом движении Солнца, он не поддерживает мнение о сферической форме небес и не отрицает, что существует более одного неба; для этого Бытие слишком четко говорит о верхних водах; и Василий выдвигает идею, общую для святоотеческих писателей, что эти воды помещались над твердью, чтобы охлаждать ее и не давать миру сгореть в небесном огне (III, 3). Что касается формы Земли, то он говорит, что многие спорили, является ли Земля шаром, или цилиндром, или диском, или, может быть, она вогнутая в середине; но Моисей ничего не говорит ни об этом, ни об окружности Земли величиной в 180 000 стадиев, ни о чем-либо ином, чего нам знать не обязательно (IX, 1). Василий, видимо, был слишком здравомыслящим человеком, чтобы отрицать результаты научных изысканий, но и слишком робким, чтобы открыто выступить за них, так что в лучшем случае он всего лишь упоминает их без комментариев или старается показать, что христианин может разделять их, не опасаясь за свою веру. Однако, за исключением идеи о верхних водах, его, пожалуй, можно отнести к сравнительно непредвзято мыслящим людям.

Безжалостно буквальное толкование Писания с особым упорством продвигали главы сирийской церкви, которые слыхом не слыхивали ни о какой космогонии или системе мироздания, кроме описанной в Книге Бытие. Современник

Василия Кирилл Иерусалимский придает большое значение необходимости веры в реальное существование сверхнебесных вод («Катехизис», IX), а младший современник Василия Севериан, епископ Гавальский, выступает еще громче и подробнее в своих шести беседах о сотворении мира, где объясняет космологическую систему, кратко изложенную в первой главе Бытия. В первый день Бог сотворил небо, не то, что мы видим, но то, что располагается над ним, и в целом конструкция образует двухэтажное здание с крышей посередине и водой над ней. Как ангел есть бестелесный дух, так верхнее небо есть нематериальный огонь, а нижний огонь – материальный и по особому Божьему установлению посылает свой свет и тепло к нам вниз, а не вверх, как другие огни (I, 4). Нижнее небо было сотворено на второй день; это прозрачная застывшая вода, предназначенная для того, чтобы противостоять пламени Солнца и Луны и бессчетных звезд, быть полным огня и все же не растаять и не сгореть, по каковой причине снаружи предусмотрена вода. Эта вода пригодится в последний день, когда пойдет на то, чтобы потушить Солнце, Луну и звезды (II, 3—4). Небеса представляют собой не сферу, а шатер или кущу; «Он распростер небеса, как тонкую ткань, и раскинул их, как шатер для жилья» (Ис., 40: 22); Писание говорит, что у него есть верх, которого нет у сферы, а также написано: «Солнце взошло над землею, и Лот пришел в Сигор» (Быт., 19: 23). Земля плоская, и Солнце ночью проходит не под ней, а через северные части, как бы скрытые стеной, и Севериан цитирует: «И заходит солнце, и спешит к месту своему, где оно восходит» (Еккл., 1:5). Когда Солнце смещается на юг, дни становятся короче и наступает зима, так как Солнцу требуется больше времени на его ночное путешествие (III, 5).

Начиная с тех времен форма мира в виде скинии стала общепризнанной среди святоотеческих авторов; так, Диодор, епископ Тарсийский (умер в 394 г.), который в своей книге «Против фатализма» [Эта книга утеряна, но Фотий приводит ее краткое изложение] выступает против тех атеистов, кто верит в геоцентрическую систему; он показывает, что Писание говорит нам, что есть два сотворенных неба, одно из которых пребывает вместе с Землей, а другое находится выше, и второе образует крышу, а первое образует крышу для Земли, но пол для верхнего неба. Небо имеет форму не сферы, но шатра или свода [Ср. толкование Златоуста на Послание к евреям, 8: 1: «Где те, которые говорят, что небо движется? Где те, которые утверждают, что оно шаровидно? То и другое здесь опровергается»].

Того же мнения придерживался и епископ Феодор Мопсуестийский из Киликии (умер около 428 г.), но его сочинение утеряно, и мы знаем лишь из насмешек более позднего автора Филопона, что он проповедовал теорию скинии и утверждал, что все звезды приводятся в движение ангелами. Примерно в то же время святой Иероним (комментарий к Иезекиилю, гл. 1 и 5) объясняет, что Иерусалим – пуп земли, и яростно обрушивается на тех, кто повторяет «глупую мудрость философов» и воображает, будто херувимы изображают два полушария, наше и антиподов.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Средневековая космология (2)

Новое сообщение ZHAN » 29 дек 2018, 11:21

В западной церкви в то время, видимо, преобладали несколько более разумные взгляды. Амвросий Медиоланский (умер в 397 г.) говорит, что для нас не имеет смысла знать что-либо о свойствах или положении Земли или состоит ли небо из четырех или пяти элементов («Шестоднев», I, 6); но все же он неоднократно говорит о небе как о сфере. Загнанный в угол вопросом, как может быть вода вне сферы, он несколько вяло высказывает догадку, что дом может быть круглым внутри и квадратным снаружи (II, 3), или же спрашивает, почему вода не может висеть в пространстве так же, как и тяжелая Земля, притом что ее предназначение, очевидно, состоит в том, чтобы не дать верхним областям сгореть в пламени эфира (II).

Вполне естественно, что Августин (354—430), которого можно считать учеником Амвросия, выражается с такой же умеренностью, как и подобает человеку, который в юности изучал Платона и святого Павла. Касательно антиподов он говорит, что нет никаких исторических свидетельств их существования, но люди просто заключают, что противоположная сторона Земли, подвешенной в выпуклости неба, не может быть лишена жителей. Но даже если Земля является шаром, из этого не следует, что другая ее часть находится над водой или, даже если это так, что она населена; и слишком абсурдно воображать, будто люди с нашей стороны могли бы по безбрежному океану перебраться на другую или что тамошние жители могли произойти от Адама («О граде Божьем», кн. XVI, 9). В отношении небес Августин, как и его предшественники, был по рукам и ногам связан этой злополучной водой над твердью. Он говорит, что те, кто защищает существование этой воды, указывают, что Сатурн – наиболее холодная планета, хотя следовало бы ожидать, что он намного горячее Солнца, так как ежедневно проходит по гораздо более протяженной орбите, но Сатурн охлаждается водой над ним. Вода может находиться в состоянии пара, но в любом случае мы не должны сомневаться в том, что она есть, ибо авторитет Писания превышает способности человеческого разума («О Книге Бытия буквально», кн. II, 5) [Ср. «О граде Божьем», XI, 34, где он говорит, что некоторые полагали, будто тяжелая вода не может находиться выше неба, и потому толковали ее в том смысле, что она обозначает ангелов; однако им следовало бы вспомнить, что носовая слизь, которую греки называют φλέγμα, помещается в голове человека! Прекрасное сравнение].

Он посвящает отдельную главу («О Бытии») форме небес, но не связывает себя никакими окончательными выводами, хотя, кажется, считает, что верящие в шарообразную форму мира не могут объяснить слов Писания о небесах. Но так или иначе, Августин, в отличие от Лактанция, не относился к греческой науке с презрением невежды; складывается впечатление, что ему хотелось уступить ей всякий раз, когда Писание не тянуло его в другую сторону, и во времена фанатизма и невежества это заслуживает уважения.

Итак, мы видим, что Отцы Церкви не все одинаково далеко заходили в своем осуждении греческой астрономии и что никто из них не потрудился подробно изложить систему, которая могла бы занять место ненавистных им учений языческих философов. Этот труд взял на себя человек, не занимавший высокого церковного поста, но много путешествовавший по суше и по морю и, может быть, поэтому настроенный более либерально в своих взглядах, нежели священнослужитель, не имевший такого преимущества. Он известен под именем Косма, прозванный Индикоплов, то есть плававший в Индию. Его книга «Христианская топография» содержит несколько фрагментов, проливающих свет на его биографию и дающих нам возможность установить дату ее написания. Вероятно, он был родом из Александрии и в первой части жизни занимался торговлей. Он сам говорит нам (пожалуй, без нужды), что был «невежествен в научных знаниях язычников», хотя, с другой стороны, ссылается на теорию эпициклов и тем самым лишает себя оправдания в своих глупых понятиях – оправдания, на которое он мог бы претендовать, будь он полным невеждой в александрийской науке. Косма Индикоплов путешествовал по Средиземному и Красному морям и Персидскому заливу, а однажды даже осмелился заплыть в страшный океан, по которому «невозможно плавать по причине многочисленных течений и плотных туманов, которые он посылает вверх, заслоняя лучи солнца, а также по причине его обширности». Одна из самых интересных частей его книги – та, где он описывает свои путешествия в Абиссинию и соседние страны. Так как он должен был достичь мест в пределах десяти градусов от экватора, это весьма удивительно, что ему удавалось закрывать глаза на факт шарообразной формы Земли. Его работа по «Христианской топографии» первоначально состояла из пяти книг, к которым затем прибавилось еще семь, чтобы разъяснить еще несколько моментов; по всей видимости, она была написана между 535 и 547 годами, так как события, случившиеся в эти годы, упоминаются в тексте как происходящие в то время, как автор о них пишет.

Первая книга направлена против тех, кто, желая исповедовать христианство, верит и воображает, подобно язычникам, что небеса имеют шаровидную форму. Косме кажется, что ему удалось разделаться с суточным движением небес тем доводом, что, судя по внешнему виду Млечного Пути, небо должно состоять более чем из одного элемента и, следовательно, должно совершать движение либо вверх, либо вниз, но ничего подобного никто никогда не наблюдал. Затем он задается вопросом, почему планеты иногда стоят на месте и даже возвращаются обратно.
«Возможно, в ответ они приведут в причину те невидимые эпициклы, которые они воображают себе в виде повозок, на которых, по их утверждению, уносятся планеты. Но это измышление им не поможет, ибо тогда мы спросим: почему они нуждаются в повозках? Не потому ли, что они не способны двигаться сами? Если так, то почему вы утверждаете, что они обладают душой, и притом даже душой божественной? Или они все же они способны двигаться сами? Сама идея кажется мне смехотворной. И почему нет эпициклов у Луны и Солнца? Разве они того недостойны по причине низшего положения? Но так не могут говорить люди в здравом уме. Может быть, из-за недостатка пригодного материала Создатель не смог соорудить для них повозки? Пусть кара за этакое богохульство падет на ваши собственные головы».
Предполагаемое положение Земли в центре Вселенной в глазах Космы совершенно абсурдно, ведь Земля настолько невыразимо тяжела, что может упокоиться разве что на самом дне Вселенной. Тут же он выдает обычные низкопробные аргументы против существования антиподов, однако считает, что эти «бабьи сказки» не заслуживают многословных рассуждений. В примечании к своей четвертой книге он спрашивает, на какое из восьми или девяти небес (небесных сфер) язычников вознесся Христос и на какое надеются вознестись сами христиане?
«Если та сфера, которая имеет движение, заставляет остальные вращаться вместе с собою с востока на запад, откуда берется движение семи планет в обратную сторону? Сферы ли это вращаются в обратную сторону или сами звезды? Если сферы, как они в одно и то же время могут двигаться и на запад, и на восток? А если звезды, то как они прокладывают свой путь сквозь небесные тела?»
После этого Косма цитирует разные отрывки из Писания, дабы окончательно сокрушить тех христиан, которые желают слушать греческих философов («никто не может служить двум господам»), и напоследок спрашивает, как шаровидная Земля, расположенная в центре мира, могла возникнуть из воды на третий день творения и как она могла быть затоплена во времена Ноя.

Сам Косма придерживается мнения, что форму Вселенной можно узнать, изучая устройство скинии, которую Моисей построил в пустыне. Мы видели, что Севериан и другие уже высказывались о том, что Земля похожа формой на скинию, но Косма в подробностях развил их предположение и указал, что Моисей провозглашает внешнюю скинию образом видимого мира, в то время как Послание к евреям, объясняя устройство внутренней скинии, той, которая скрыта завесой, заявляет, что это образ Царства Небесного, а завеса – это твердь, делящая мир на две части, верхнюю и нижнюю. Стол хлебов предложения с его волнистым окаймлением обозначает Землю, окруженную океаном, а вторая внешняя граница, расположенная за первой, – другую Землю за океаном, при этом все остальные предметы, находящиеся в скинии, тоже имеют космографическое значение. Так как стол поставлен вдоль с востока на запад, мы узнаем, что Земля представляет собой плоский прямоугольник, длина которого вдвое больше ширины, и простирается длинной стороной с востока на запад. Океан, опоясывающий нашу землю, в свою очередь окружен другой землей, где помещался Рай и где жил человек до потопа, пока ковчег не доставил Ноя с его семьей и животными на нашу землю, а прежняя с тех пор стала недоступна вследствие невозможности переплыть океан. Стены неба представляют собой четыре перпендикулярные плоскости, соединенные с краями заокеанской земли, ее крыша в форме полуцилиндра опирается на северную и южную стены, и всю конструкцию в целом Косма уподобил своду бани, хотя на современный взгляд все это больше похоже на дорожный сундук с полукруглой крышкой. Конструкция разделена на два этажа твердью, которая образует пол для верхнего и потолок для нижнего этажа, причем нижняя часть – это обитель ангелов и людей до Судного дня, а верхняя – будущее жилище блаженных.

Земля, подножие Господа, находится в нижней части конструкции, а Солнце, Луна и звезды не прикреплены к бокам или крыше, но увлекаются в своем ходе под твердью ангелами, которые должны выполнять эту работу до последнего дня. Восход и заход Солнца требует особого объяснения. Конечно, Солнце не может проходить под землей, поэтому Косме пришлось предположить (вместе с Северианом), что ночью оно скрывается на севере. Цитируя тот же отрывок из Екклесиаста, Косма утверждает, что Земля на севере и западе гораздо выше, чем на юге и востоке, и хорошо известно, что корабли, ходящие на север и запад, называются копушами, потому что они поднимаются вверх и поэтому плывут медленнее, а возвращаясь, спускаются с высоты вниз и потому плывут быстрее. Тигр и Евфрат, текущие на юг, несут свои воды гораздо быстрее, чем Нил, который «бежит, можно сказать, вверх» [Верить, что у антиподов дождь падает вверх, – это абсурд, а верить, что река течет вверх, – это, видимо, нормально!]

На севере возвышается огромная конусообразная гора, за которой Солнце проходит ночью, и, поскольку Солнце во время этого прохода находится ближе или дальше от горы, нам соответственно кажется, будто оно проходит ближе к ее вершине или ближе к основанию; в первом случае ночи короткие и наступает лето, во втором ночи долгие и наступает зима. Ангелы перемещают все остальные небесные тела аналогичным образом по орбитам и проводят их за северной, возвышенной частью Земли, а затмения происходят оттого, что «оборот и ход светил совершается с небольшим наклоном».

Когда Косма закончил свои пять книг, его спросили, как Солнце может скрываться за северной частью Земли, если оно во много раз больше Земли? Поэтому он посвятил шестую книгу доказательству того, что Солнце на самом деле довольно мало, и нигде он не доказывает свою полную неспособность рассуждать о самых простых фактах так же убедительно, как в ней. Основываясь на том, что во время летнего солнцестояния тень человека в Антиохии или на Родосе (начало шестого климата Птолемея) [Первый климат (широтный пояс) начинается там, где продолжительность самого длинного дня составляет 12 ч 0 мин, второй – где она составляет 12 ч 30 мин и так далее.] на пол фута короче, чем в Византии (чуть дальше начала седьмого), он пришел к выводу, что Солнце «имеет размер двух климатов». Если в Мероэ человек не отбрасывает тени, в Сиене (на один климат дальше к северу) он отбрасывает тень на полфута к северу, а в Эфиопии (на один климат дальше к югу) – на пол фута к югу, то, следовательно, диаметр Солнца составляет два климата! [Около 1706 километров или, если взять два климата от Александрии до Византии, около 1094 километров.]

Такова была знаменитая система мира Космы Индикоплова. Он не был одним из глав церкви (даже неясно, был ли он православным или несторианином), и его книга, по всей видимости, никогда не пользовалась большим авторитетом. Самим фактом написания, так сказать, учебника на эту тему он приобрел определенную дурную известность; но хотя нельзя отрицать, что ему удалось проявить немалую оригинальность в выворачивании бесчисленного множества отрывков из Писания, которыми напичкана его книга, для доказательства собственных утверждений, все же в действительности такую же систему мироздания обозначили Отцы Церкви еще за двести лет до того. Это подтверждает и сам Косма, который в своей десятой книге приводит ряд цитат из святоотеческих писателей, особенно из Севериана. На бедного Коему обрушилось немало насмешек, но справедливости ради их следовало бы адресовать его предшественникам, которые злоупотребили авторитетом своего положения в церкви и своими литературными талантами ради распространения идей, которые в Греции были отброшены еще за восемьсот лет до того. Но за что Косма действительно заслуживает порицания, так это за то, что во время своих путешествий не заметил, что Земля – это шар.

Фанатики, мечтавшие искоренить, словно вредные сорняки, весь пышный цвет греческой науки, были, однако, не единственными на этом поле. Некоторые авторы даже тогда изучали труды греческих философов и не боялись принимать по крайней мере отдельные из их доктрин. Среди таких авторов был Иоанн Филопон, грамматик из Александрии, живший, по-видимому, примерно в конце VI века и написавший толкования на несколько сочинений Аристотеля, а также ряд трактатов, в которых выказал замечательную свободу мысли, чем, естественно, заработал себе репутацию еретика и в более поздние времена, разумеется, отправился бы на костер. В своей книге «О сотворении мира» он выступает против злоупотребления библейскими цитатами у Феодора Мопсуестийского, доказывающего, что небо не шаровидно (III, 10) или что звезды двигают ангелы, назначенные для выполнения этой задачи; и спрашивает, почему Бог не наделил звезды какой-либо движущей силой. Он заходит даже так далеко, что сравнивает эту силу со стремлением всех тел, тяжелых и легких, падать на землю [Вероятно, он взял эту идею у Эмпедокла, которого цитировали Аристотель, «О небе», II, 1, с. 284 а, и Симпликий, с. 375].

Однако в силу такой недостаточной ортодоксальности взгляды Филопона не могли оказать на его современников сколько-нибудь заметного влияния, и гораздо большую роль сыграло то, что очень толковые идеи об устройстве мира выразил человек, занимающий высокое положение в западной церкви, – епископ Севильский Исидор. Он родился около 570 года и стал епископом Севильи уже в 601 году, вероятно благодаря высоким связям своей семьи, но вскоре широко прославился ученостью и красноречием и дважды председательствовал на церковных соборах. Умер Исидор в 636 году. Среди его многочисленных сочинений есть один энциклопедический труд – Etymologiarum libri хх, в начале которого он перечисляет семь свободных искусств: грамматику, риторику, диалектику (тривиум) и арифметику, музыку, геометрию, астрономию (квадривиум), которые еще задолго до дней Исидора считались охватывающими все человеческие знания. Этот труд называется «Этимологии» (иногда «Начала»), потому что Исидор в основном объясняет значение слова или выражения исходя из его предполагаемого происхождения. Имея дело с рискованными темами, такими как форма мира и Земли, он сам не делает безапелляционных заявлений, а цитирует «философов», учивших тому или иному, но и не порицает их. При этом он неоднократно упоминает (например, XIII, 5; III, 31—32), что, согласно их учениям, небеса являются сферой, вращающейся вокруг своей оси, в центре которой находится Земля. Точно так же он трактует и шаровидную форму Земли, говоря в главе об Африке (XIV, 5, «О Ливии», 17):
«Но, помимо трех частей шара (Азия, Европа, Африка), есть четвертая на юге за океаном, которая вследствие жара Солнца нам неизвестна и на окраинах которой, как говорят истории, живут антиподы».
Существование четвертого континента часто постулировали географы древности, некоторые из них даже предполагали наличие двух других ойкумен в Западном полушарии, на севере и на юге от экватора; и весьма похвально, что Исидор не стал, как его предшественники, неистовствовать о греховности мнения, что на противоположной стороне Земли могут жить люди.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Средневековая космология (3)

Новое сообщение ZHAN » 30 дек 2018, 23:01

Исидор также написал трактат поменьше – «О природе вещей», где более подробно изложил некоторые темы, затронутые в большей работе, и здесь мы видим, что он занимает место посередине между «философами» и фанатичными Отцами Церкви. Небо – это сфера, которая совершает оборот за сутки (гл. XII), и, хотя Амвросий в своем «Шестодневе» говорит, что, по мнению философов, существует семь небес у семи планет, все же человеку в своей суетности не следует рассуждать об их числе. Огненную природу неба Господь Создатель умерил водами, чтобы пламя верхнего огня не сожгло нижележащие элементы. Поэтому он назвал круг нижнего неба твердью, поскольку оно поддерживает верхние воды (гл. XIII). Луна намного меньше Солнца (гл. XVI) и расположена ближе всего к нам; порядок планет таков: Луна, Меркурий, Венера, Солнце и т. д., они завершают свои круги за 8, 23, 9, 19, 15, 22 и 30 лет! [Гл. XXIII. Конечно, Исидор неверно понял смысл этих периодов, которые являются не периодами обращения, а периодами, в течение которых планеты занимают те же места среди звезд.] Звезды (неподвижные) движутся вместе с миром, а не так, что они движутся, в то время как мир стоит (гл. XII). Какая странная смесь истины и заблуждений. :)

Но хотя такие просвещенные мыслители, как Филопон и Исидор, могли разделять некоторые учения Античности, представления о космографии вроде тех, что у Космы Индикоплова, продолжали процветать. Примерно в VII веке мы встречаем космографию, которую приписывают некоему Этику из Истрии. Это якобы сокращенный перевод греческого оригинала, написанного священником по имени Иероним; однако нам ничего не известно ни о предполагаемом авторе, ни о переводчике, который, весьма вероятно, сам и составил книгу. Он говорит поразительные вещи об Александре Македонском, Гоге и Магоге, кентаврах и минотаврах и людях с собачьими головами; на самом деле вся его книга читается как бред сумасшедшего. Но так как в Средние века она пользовалась значительным авторитетом, мы не можем вычеркнуть ее из нашего обзора космологических представлений того времени. Земля, конечно, плоская, Солнце тоже (оно называется столом – mensa solis), и каждое утро оно проходит через врата на востоке, чтобы осветить весь мир, а вечером проходит через врата на западе, чтобы за ночь вернуться к исходной точке через юг (!), скрытое тем временем густым туманом, который закрывает его от нас, но позволяет части его света падать на Луну и звезды. Под Землей находится пучина великих вод. Небеса раскинуты над Землей, как оболочка, и окружают Солнце, Луну и звезды, все они свободно перемещаются и отделены им от шести верхних небес, обители небесного воинства. [Редактор немецкого издания 1858 года с большим энтузиазмом относится к своему герою и жадно проглатывает все его чудесные байки; он также охотно соглашается, что переводчиком является сам святой Иероним, и допускает, что оригинал был написан еще до правления Константина!]

Другой географ конца VII века, «анонимный географ из Равенны», сочинение которого в основном носит статистический характер, смотрит на мир практически так же, как святоотеческие авторы. На западе мир ограничен океаном, на востоке – бескрайней пустыней, которая даже Александра Македонского заставила повернуть назад. Солнце освещает весь мир одновременно. На севере, за океаном, возвышаются большие горы, помещенные туда Богом как завеса, за которой скрываются Солнце и Луна. Некоторые отрицают существование этих гор и спрашивают, видел ли их кто-нибудь вообще, однако совершенно понятно, что Творец сделал их недоступными, чтобы человечество ничего о них не узнало [Оригинал написан по-гречески, но до наших дней дошел только перевод на латынь].

Это, однако, последний достойный упоминания автор, который упорно отказывался следовать здравому смыслу. Несомненно, на протяжении всего Средневековья оставались священнослужители, считавшие идею шарообразности Земли кощунством, и даже среди тех, кто ее признавал, очень немногие имели смелость открыто заявить, что нет ничего немыслимого в предположении, что на другой стороне шара тоже могут жить люди. Но в тишине и покое монастырей задолго до равеннского географа устоялась практика изучения древних латинских авторов, и геоцентрическая система медленно, но неуклонно начала занимать свое прежнее место в разряде общепринятых фактов.

Следующая после Исидора выдающаяся фигура среди авторов Средневековья – Беда Достопочтенный, который следовал за своим предшественником во взглядах о мире. Беда родился около 673 года на севере Англии и провел большую часть жизни в двух тамошних монастырях, куда их основатели привезли из Рима значительное количество книг, и он с умом воспользовался ими при подготовке своих многочисленных трудов. Так высока была репутация, которую он этими трудами приобрел, что через много лет после его смерти (и даже четыре или пять столетий спустя) появлялись поддельные трактаты, которые подсовывались читателям под видом сочинений великого английского монаха, которого потомки удостоили прозвищем Достопочтенный в знак своего восхищения. Однако отделить ложные трактаты от подлинных можно довольно просто, тем более что Беда за четыре года до смерти (случившейся около 735 года) составил список своих сочинений и приложил его к своей знаменитой «Церковной истории».

К числу не вызывающих сомнения сочинений Беды относится трактат De natura rerum, «О природе вещей», который в параграфе 51 рассуждает о звездах, Земле и ее областях, громе, землетрясениях и тому подобном. Содержание взято из Плиния, часто почти дословно; там прямо сказано и о шарообразной форме Земли, и о порядке семи планет, кружащих вокруг нее, о том, что Солнце гораздо больше Земли, и тому подобных фактах [Он даже переписывает у Плиния (II, 49), что Луна больше земли (гл. XIX). Возможно, Плиний неверно понял Папирус Евдокса, XX, 15]. Но Беда, конечно, не мог исключить из книги злополучную воду вокруг небес и привычное объяснение ее существования (гл. VII), хотя Плиний об этом не упоминает и Беда говорит, что небо является сферой. В другой, гораздо более пространной книге Беда рассуждает о хронологии (De temporum ratione, «Об исчислении времени») и показывает хорошее знание годового движения Солнца и других основных небесных явлений. Относительно поясов Земли (гл. XXXIV) он говорит, что лишь два из них могут быть населены, а с баснями об антиподах нельзя согласиться, так как никто никогда не слышал и не читал ни о ком, кто бы пересек жаркий пояс и обнаружил, что человеческие существа обитают и за его пределами.

Стоило проявлять очень большую осторожность, говоря об антиподах, и это подтверждает тот факт, что ирландскому священнику VIII века Фергилю, более известному под именем Вергилия Зальцбургского, грозила по этой причине гибель. Сначала он был настоятелем монастыря Ахабо (в нынешнем графстве Лиишь) и отправился в Святую землю около 745 года, но не доехал дальше Зальцбурга, где стал настоятелем собора Святого Петра. В 748 году у него возник конфликт с Бонифацием, главой миссионерских церквей Германии, насчет действительности крещения, которое совершает священник, не знающий латыни, и Бонифаций, докладывая об этом римскому папе (Захарии), воспользовался шансом пожаловаться на Вергилия, который в своих лекциях учил, что существует «другой мир и другие люди под землей». Захарий ответил, что Бонифаций должен созвать собор и отлучить Вергилия от церкви, если он действительно учил такому. Неизвестно, были ли какие-то меры приняты против Вергилия [В Thesaurus Monumentorum Генриха Канизия, III, 2, с. 273, говорится, что Вергилий не подчинился, когда его вызвали в Рим. В Monumenta Germaniae обвинение не упоминается], но так или иначе он не мог быть осужден по обвинению в ереси, раз в 767 году стал епископом Зальцбурга (когда и Бонифаций, и Захарий были давно мертвы) и руководил этой епархией до самой смерти в 784 или 785 году.

Труды его не сохранились, и мы ничего не знаем о его учениях, за исключением приведенных выше слов из ответа папы, к которому в одном варианте добавляется, что у другого мира под нашим есть свое Солнце и Луна. Но это, вероятно, незначительная поправка, сделанная каким-то переписчиком, чтобы подчеркнуть скандальную ересь Вергилия, и у нас нет никаких сомнений, что Вергилий просто учил о существовании антиподов. И в конце концов, нет ничего такого уж удивительного в том, что ирландский монах знал о шарообразной форме Земли. Помимо того, что многие ирландские монастыри были центрами культуры и образования, где в то время, когда непроглядный мрак покрывал большую часть континента и в меньшей степени Англии, изучались изобразительное искусство и классическая литература; вдобавок самоотверженные миссионеры еще до Вергилия распространили свет христианства вплоть до самых северных Оркнейских островов, а биограф святого Колумбы Адамнан лично общался с Аркульфом, который совершил паломничество в Святую землю. Непреложный факт шарообразности Земли, утверждаемый греческими и римскими писателями, со всей ясностью следует из сравнения заметок этих путешественников, чей опыт распространялся на 25 градусов широты.

В последующем столетии мы находим еще одного знаменитого ирландца – Дикуила, который в 825 году закончил свой географический сборник Liber de mensura orbis terrae, «Книга об измерении круга земель». Хотя он ничего не говорит о форме Земли, он рассказывает об ирландских миссионерах, которые за тридцать лет до того побывали на острове Туле (здесь это, вне всяких сомнений, означает Исландию), где видели Солнце, едва скрытое в полночь в середине лета, как будто немного зашедшее за холмы, так что ночью было почти так же светло, как в разгар дня,
«и я полагаю, что во время зимнего солнцестояния и сопутствующие дни Солнце на Туле поднимается лишь на очень короткое время, когда в середине Земли стоит полдень».
Следовательно, Дикуил должен был ясно понимать явления «наклонной сферы».

Как бы опасно ни было заявлять о том, что в недоступной части Земли обитают человеческие существа – существа, которые не могли считаться потомками Адама и искупленными смертью Христа, мысль о неизбежном противостоянии религии и светского образования быстро теряла популярность, и к тому времени среди образованных людей стало довольно обычным признавать, что Земля является шаром. Тем не менее некоторые предпочитали умалчивать об этом, например аббат Фульдский и затем архиепископ Майнцский Рабан Мавр (умер в 856 г.), который, хотя и сделал немало для поощрения изучения классических трудов, в своей энциклопедической работе De universo, «О Вселенной», говорит лишь, что Земля находится в центре мира (XII, 1). Обитаемые земли, говорит он, называются orbis «от округлости круга, потому что они подобны колесу» (XII, 2); но он считает необходимым предположить, что они имеют квадратную форму, поскольку Писание говорит о четырех углах, и ему приходится выкручиваться, чтобы объяснить, почему горизонт круглый. Однако он ссылается на четвертую книгу Евклида и, по-видимому, считает, что ситуацию можно спасти квадратом, вписанным в круг. Однако его утверждение, что у неба есть две двери, восточная и западная, в которые входит Солнце (IX, 5), выглядит так, как если бы он фактически разделял точку зрения святоотеческих авторов.

Но когда на папский престол под именем Сильвестр II взошел выдающийся математик Герберт Реймский (в 999 г., умер в 1003 г.), последователи Лактанция остались не у дел. Пример Беды, который открыто учил о шарообразности Земли, принес свои плоды, как и, разумеется, пример папы, знакомого с научными трудами древних [Среди источников своей «Геометрии» Герберт упоминает «Тимея» Платона, Халкидия, Эратосфена и так далее], который в молодости конструировал небесные и земные глобусы как наглядные пособия для лекций по астрономии и имел обыкновение обменивать их на рукописи латинских классиков. Человечество продолжало расширять свой кругозор путем распространения географических знаний благодаря сношениям с арабами в Испании, с одной стороны, и путешествиям и приключениям жителей Севера – с другой.

Адам Бременский (около 1076 г.), чья хроника представляет большую важность для изучения истории его эпохи, не имеет ничего общего с сочинениями Космы или анонимного равеннского географа; он прекрасно понимает причину неравной продолжительности дня и ночи на разных широтах и выказывает себя способным учеником Беды Достопочтенного. Карты того периода также отмечают значительный шаг вперед.

Помимо обычных карт в виде колеса или карт Т и О, называемых так благодаря их форме в виде вписанной в круг буквы Т (Азия находится над горизонтальной чертой Т, а вертикальная черта изображает Средиземное море), мы встречаем и более сложные. Они в большинстве основаны на построениях Беата, испанского священника, жившего в конце VIII века; на них Африка не доходит до экватора и нет никаких признаков антиподов, но при этом и ничего противоречащего округлости Земли; и шаг за шагом, по мере того как составители карт все лучше разбирались в древних трудах по географии, они делали все более смелые попытки в изображении Земли.

Примерно с IX века можно считать, что шарообразность Земли и геоцентрическая система планетных движений снова заняли то место, которые они занимали у философов Греции со времен Платона. Труды этих философов еще не были известны на Западе, где после V века греческий язык был неизвестен; однако сочинения Плиния, Халкидия, Макробия и Марциана Капеллы предоставили немало информации тем, кто их читал, и со времен Карла Великого (768—814) римская литература быстро приобретала все большую известность. У нас есть две работы неизвестной даты создания, основанные на этих трудах. Они подписаны именем Беды Достопочтенного, но, безусловно, появились гораздо позже и не включены в современное издание его сочинений. Одна из них озаглавлена «Книга об устройстве мира небесного и земного», и едва ли кто-либо мог подумать, что она действительно написана Бедой, ведь автор цитирует его и несколько раз ссылается на хроники Карла Великого, так что в любом случае она не могла быть написана прежде 814 года. У автора неплохие общие знания в вопросе небесных феноменов, насколько их можно было почерпнуть из книг вышеупомянутых авторов, но не более того. Шарообразность Земли он доказывает разной продолжительностью дня на разных широтах, а также тем, что небесные явления происходят неодновременно в разных местностях. Он говорит, что Платон вслед за египтянами помещал орбиту Солнца сразу за орбитой Луны, но сам, видимо, придерживается мнения, что Венера и Меркурий иногда проходят над Солнцем, а иногда под ним, так как в истории Карла написано, что Меркурий в течение девяти дней был виден как пятнышко на Солнце, хотя из-за облачности не удалось заметить ни вступления Солнца в его тень, ни выступления оттуда. Когда Венера и Меркурий находятся ниже Солнца, они видны днем, и автор предполагает, что звезда, которую видели на похоронах Цезаря, была Венерой [Это была комета]. Также приводятся пределы планет по широте [Взяты из Марциана Капеллы, но для Солнца указано 2°, как у Плиния].

Автор выказывает некоторую независимость от своих авторитетов, так как добавляет щедрую горсть астрологии, а затем еще больше, излагая разнообразные теории того времени о неизбежных «наднебесных водах». Одна из них состоит в том, что на внешней поверхности неба есть углубления, в которых может находиться вода (как на поверхности Земли), и, несмотря на быстрое вращение небес, она не вытекает, так же как вода остается в сосуде, если его быстро вертеть! Другая заключается в том, что эта вода всего лишь пар, подобный облакам; третья в том, что она заморожена по причине большой удаленности от Солнца, главного источника тепла, и что Сатурн называют самым холодным светилом, потому что он ближе всего к воде. Но вода удерживается там просто силой Бога для остужения небес, а выше располагаются духовные небеса, где обитают ангельские чины.

Другая работа, которую прежде причисляли к сочинениям Беды, называется Περὶ διδάξεων sive elementorum philosophiae libri IV. Ее приписывали Вильгельму Конхезию, норманну первой половины XII века, и в любом случае она не могла быть написана намного раньше, так как в ней проявилась свобода мысли, невозможная в дни Беды. Это особенно верно в отношении вопроса, существует ли вода выше эфира. Цитируя отрывок из Книги Бытия о воде над твердью, автор говорит, что он идет против здравого смысла, ведь если это лед, то он тяжел и тогда ему следовало бы находиться на Земле, а если вода, то, находясь рядом с огнем, она либо потушила бы его, либо испарилась бы от огня, ведь мы не предполагаем между ними никакой границы. Воздух называется твердью, потому что он укрепляет земные вещи и управляет ими, а над ним помещается вода в виде облаков, которые отличаются от воды, находящейся ниже воздуха. «Хотя мы склонны думать, что это сказано более аллегорически, нежели буквально». Обращаясь к планетам, автор показывает знакомство с различными взглядами на местоположение солнечной орбиты. Он отвергает идею, что Солнце помещено сразу за Луной с той целью, чтобы жар и сухость Солнца противодействовали холоду и влажности Луны, которые в противном случае могли бы стать чрезмерными по причине близости к Земле. А также и идею, что Солнце должно находиться рядом с Луной, потому что Луна им освещается. Но так как Солнце, Венера и Меркурий обходят зодиак почти за один и тот же период, их орбиты должны быть практически равны по размеру и не содержаться одна внутри другой, а пересекаться друг с другом [Диапазон планет по широте проиллюстрирован чертежом, и следующие из него числовые данные (не указанные в тексте) практически совпадают с цифрами из книги «Об устройстве мира». Вероятно, чертеж является поздней вставкой, и к тому же весьма нелепой]. Солнце в восемь раз больше Земли. Воздух достигает Луны; выше находится эфир или огонь, настолько тонкий, что может гореть, только если смешается с чем-то влажным и плотным; а Солнце и звезды состоят не из одного огня, но и из других элементов, хотя огонь среди них главный. Во всем этом нет ничего нового.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Средневековая космология (4)

Новое сообщение ZHAN » 01 янв 2019, 16:01

Что же касается Земли, то, по словам автора, она находится в середине, как желток в яйце, а вокруг нее вода, как белок вокруг желтка; вокруг воды воздух, как пленка вокруг белка, и, наконец, снаружи огонь, как скорлупа. Два пояса с умеренным климатом обитаемы, но мы полагаем, что лишь один населен людьми.
«Но так как философы рассуждают о жителях обоих поясов, но не потому, что они существуют, а потому, что могут существовать, мы изложим то, что считаем существующим, исходя из наших философских книг».
Пояс, в котором мы живем, состоит из двух частей, одну населяем мы, а другую – наши антиподы, подобным же образом и другой обитаемый пояс состоит из двух частей, из которых верхняя относится к нашим anthei, а нижняя – к их антиподам. Таким образом, у нас и наших антиподов лето и зима наступают одновременно, но, когда у нас день, у них ночь. Другими словами, автор придерживается старинной идеи о четырех ойкуменах, но использует слово «антиподы» в непривычном смысле, имея в виду людей, живущих в нашем полушарии, но в 180° от нас по долготе.

Примерно в то же время появляется Imago mundi, «Изображение мира» Гонория Августодунского, своего рода краткая энциклопедия первой половины XII века. Космографическая часть заимствована у Плиния, но с необходимыми добавлениями, чтобы удовлетворить вкус средневековых читателей [Среди данных, заимствованных у Плиния, можно назвать наибольшие широты планет (I, 79) и музыкальных интервалов планет (I, 81); один тон = 15 625 миллиариев, это расстояние до Луны, расстояние от Луны до Меркурия = 7812½ миллиария и т. д., таким образом расстояние до неба (семь тонов) составляет 109 375 миллиариев].

Как полагается, упомянуты две небесные двери, хоть они и не вписываются в геоцентрическую систему мира. Верхнее небо называется твердью; оно имеет форму шара, со всех сторон украшено круглыми огненными звездами, за его пределами вода в виде облаков, выше ее духовное небо, неизвестное человеку, где расположены девять уровней ангельских обителей [Ср. «Сентенции в четырех книгах» Петра Ломбардского, епископа Парижского (умер в 1164 г.), где во второй книге он рассуждает о природе ангелов и их иерархии. Что касается верхних вод, то он цитирует мнение Беды о том, что они образуют небесную твердь, так как хрусталь состоит из воды, и мнение Августина о том, что они находятся в виде пара, гораздо более легкого, чем пар облаков. «И все же нам не пристало сомневаться в том, что они существуют». Иерархия ангелов указана у Псевдо-Дионисия Ареопагита и в Средние века считалась общепризнанной; в «Сумме теологии» Фомы Аквинского (I, 108) она устроена следующим образом: Серафимы, Херувимы, Престолы из высшей, эмпирейской иерархии; Престолы передают Божьи повеления первому разряду второй иерархии – Господствам, за которыми идут Власти, управляющие движениями звезд и планет, и Силы, расчищающие их путь от всего, что могло бы помешать этим движениям. Третья иерархия – Начала, Архангелы и Ангелы – управляют земными делами. Ср.: Данте, «Пир», II, 6].

Там находится Рай Раев, куда восходят души святых, и это то самое небо, которое было создано вначале вместе с землей. В центре земли находится ад, описанный довольно подробно. Где находится чистилище, автор, похоже, не знает.

Сочинение Гонория нашло нескольких подражателей в прозе и стихах, среди вторых мы встречаем Image du monde («Образ мира»), написанный в 1245 году неким Омоном (иначе неизвестным), который упоминает среди своих источников Гонория и Вильгельма Конхезия. В книге излагаются подобные же идеи. Птолемей, царь Египта, изобрел часы и различные инструменты и написал несколько книг, одна из которых называется «Альмагест». Существует два неба, хрустальное и эмпирей; в последнем обитают ангелы, и из него были изгнаны демоны. Дети по причине своей невинности способны расслышать небесную музыку. Воздух неба называется эфиром, из него образованы тела ангелов. О системе планет автор ничего не говорит.

Склонность к энциклопедическим сочинениям особо заметно проявилась в XIII веке, на что в большой степени повлияло знакомство с трудами Аристотеля, которые наконец-то начали распространяться в западных странах. Примерно в середине XII века во Францию из Испании пришли арабские переводы Аристотеля, а вместе с ними и комментарии Александра и Симпликия и произведения других греческих философов. Им требовался перевод на латинский язык; и хотя переводы оказались не очень точными, пройдя через сирийский и арабский языки, прежде чем облачиться в латынь, все же им удалось открыть перед восхищенным миром сокровищницу греческой мысли. Сначала церковь была враждебна к этому движению, что было естественной реакцией на массу мистических, псевдонеоплатонических и арабских рассуждений, ввозимых под прикрытием трактатов Аристотеля; и на Парижском соборе, состоявшемся в 1209 году, было объявлено, что в Париже не разрешается ни публично, ни в частном порядке читать книги Аристотеля по натурфилософии и комментарии к ним. В 1215 году запрет был подтвержден в статутах Парижского университета. Но мало-помалу страхи церкви сошли на нет, так что в 1254 году вышли официальные предписания о том, сколько часов следует уделять объяснению физических трактатов Аристотеля; и с тех пор аристотелевская натурфилософия почти на четыре столетия твердо обосновалась в Парижском университете, да и в любом другом учебном заведении. Свежие переводы были сделаны еще раньше по приказу императора Фридриха II; вскоре появились и другие, сделанные непосредственно с греческого оригинала, по просьбе Альберта Великого (1193—1280) и его ученика Фомы Аквинского (1227—1274), и вскоре Аристотель стал признанным союзником богословов. Альберт и Фома своими трудами значительно способствовали распространению знаний об античной науке, как и колоссальная энциклопедия Винсента из Бове (Speculum naturale, «Зерцало природное», завершенная в 1256 году), сыгравшая в этом процессе большую роль.

Наиболее представительным писателем среди схоластов является Фома Аквинский, и среди его трудов есть один особый, о котором мы не можем здесь не упомянуть. Это комментарий к книге Аристотеля «О небе», и он написан в духе, который свидетельствует об огромном шаге от тьмы к свету, сделанном незадолго до того. Хотя Аквинат глубоко убежден, что откровение – гораздо более важный источник знаний, чем разум человека, он все же считает и то и другое двумя различными и отдельными путями к истине; и поэтому в разъяснении Аристотеля он никогда не тревожится из-за расхождений между доктринами античного автора и Библии, но предполагает, что в конечном счете они оба исходят из одного источника. Его толкования читать очень интересно [Особенно если перед этим осилить святоотеческих авторов], они гораздо яснее, чем у Симпликия, с которым Фома Аквинский хорошо знаком и часто цитирует его наряду с трудами Платона, Птолемея и прочих. Везде, где необходимо, он указывает, что философы после Аристотеля придерживались иных взглядов, например в замене гомоцентрических сфер эпициклами или в отношении движения сферы звезд, которую Аристотель считает наивысшей, тогда как более поздние астрономы утверждают, что сфера неподвижных звезд обладает некоторым собственным движением (то есть прецессией), по каковой причине они помещают над ней другую сферу, которой приписывают первое движение. Говоря, что Земля находится в покое в центре мира, он цитирует доводы Птолемея в пользу этого постулата.

Здесь можно упомянуть и другого, гораздо более скромного писателя, так как его небольшой «Трактат о сфере» оставался главным учебником по элементарной астрономии в течение почти четырех веков. Мы почти ничего не знаем о жизни Иоанна Сакробоско, или Иоанна из Святого Леса, за исключением того, что он умер в Париже в 1256 году. Он цитирует Птолемея и Аль-Фергани (последний был переведен в середине XII века) и описывает экванты, деференты и эпициклы, будучи первым европейским писателем Средних веков, который хотя бы вкратце изложил птолемеевскую систему движения планет [Сакробоско, по-видимому, имел лишь самое элементарное представление о системе Птолемея, к тому же из вторых рук, потому что он копирует ошибку Аль-Фергани и Аль-Баттани, а именно что две точки на эпицикле, в которых планета неподвижна, являются точками соприкосновения с двумя касательными, проведенными от Земли]. После долгого и безмятежного царствования Плиния и Марциана Капеллы Птолемей наконец-то начал снова выдвигаться на первый план.

Но подавляющее большинство схоластов не выходило за пределы Аристотеля, который считался альфой и омегой мудрости и образования. Был, однако, один человек, которого роль простого раба Аристотеля устраивала не больше, чем александрийских мыслителей. Роджер Бэкон (1214– 1294) в своем Opus Majus, «Большом труде», показывает детальное знакомство с литературой греков и арабов. Однако в противовес общей тенденции предыдущей тысячи лет он не считает достаточным написать многословные комментарии к сочинениям древних авторитетов: он способен мыслить самостоятельно, и он особо подчеркивает важность опыта, так как именно опыт дает единственный шанс вывести науку из младенческого состояния, в котором она до сих пор пребывает, и Бэкон полностью это осознает. Доктора богословия вслед за античными писателями тоже размышляли об опыте как о единственном безопасном путеводителе в видимом мире. Но это начиналось и заканчивалось одними разговорами; они не открыли ни одного нового факта в натурфилософии, не определили значения ни одной астрономической константы.

Роджер Бэкон был человеком иного склада, и, если бы он жил в более благоприятные времена, он, несомненно, открыл бы новую эру в истории науки, а не оставался бы лишь гласом вопиющего в пустыне, чей замечательный труд пролежал в рукописи почти пятьсот лет, прежде чем был напечатан. Его целью было реформировать философию природы, лишив ее слепого поклонения авторитетам и утвердив важность математических исследований. Поскольку он был всего лишь бедным преследуемым ученым, у него не было способов осуществить свои замыслы; но его трактат о перспективе показывает, на что он был способен и что мог бы совершить, если бы ходил в любимчиках церкви, а в ее пленниках. В своих общих представлениях о Вселенной он следовал за Птолемеем, и поэтому мы здесь лишь коротко упомянем об одном или двух его тезисах. Бэкон отмечает, что Земля – лишь незначительная точка в центре огромного неба; согласно Аль-Фергани, наименьшая звезда больше Земли, звезда шестой величины в 18 раз больше, звезда первой величины – в 107, а Солнце – в 170 раз больше (по объему [Он также указывает размеры орбит по Аль-Фергани в римских милях, причем диаметр звездной сферы составляет 130 715 000 миллиариев]).

Птолемей показал, что путешествие звезды по небу (то есть прецессия) занимает 36 000 лет, в то время как человек может обойти вокруг Земли менее чем за три года. Любопытно, что в главе, посвященной географии, он довольно подробно рассматривает вопрос о том, насколько большая часть Земли покрыта морем, и на основе высказываний Аристотеля, Сенеки и Птолемея приходит к выводу, что океан между восточным побережьем Азии и Европы не очень широк. Эту часть сочинения Бэкона почти буквально переписал кардинал Петр д’Альи в своем Imago mundi, «Изображении мира» (написанном в 1410 г., впервые напечатанном в 1490 г.), без каких-либо ссылок на Бэкона; его цитировал Колумб в своем письме с Эспаньолы [Эспаньола – старинное название острова Гаити] двум испанским монархам в 1498 году, и оно, видимо, произвело на него очень сильное впечатление. Приятно думать, что гонимый английский монах, к тому времени уже двести лет пролежавший в могиле, смог протянуть ему крепкую руку помощи в расширении горизонтов человечества.

Читателя Роджера Бэкона не может не поразить огромное различие между ним и Отцами Церкви. В то время как они не щадили сил, стараясь оправдать самое буквальное толкование Библии до последней буквы, Роджер Бэкон бесстрашно указывает на трудности в разных отрывках Ветхого Завета и настоятельно подчеркивает, что единственный способ преодолеть их – это тщательное изучение науки, чего Отцы Церкви сделать не сумели. В качестве примеров он приводит первую главу Бытия, Солнце, остановившееся по просьбе Иисуса Навина, и солнечную тень, возвратившуюся на десять ступеней, по которым она сходила (Ис., 38: 8), а также утверждение святого Иеронима (толкование на Исаию), что в Орионе двадцать две звезды, девять из которых третьей, девять – четвертой, а остальные – пятой величины, что не согласуется с восьмой книгой «Альмагеста».

Но хотя труды Птолемея были знакомы немногим просвещенным людям, таким как Фома Аквинский и Роджер Бэкон, они, разумеется, оставались совершенно неизвестны даже самым выдающимся людям XIII века. Этот факт хорошо виден на примере космографических идей Данте, чья «Божественная комедия» выражает преобладавшие в его время (около 1300 г.) взгляды на устройство мира. Вообще говоря, довольно рискованно делать выводы о состоянии научных знаний эпохи по астрономическим намекам в поэзии [Например, судя по романам XIX века, можно подумать, что тогда люди ничего не знали о движении Луны, ведь в них довольно часто можно встретить что-нибудь о вечернем восходе юного месяца, полной луне, плывущей по летнему небу, и тому подобное], но в случае Данте это вполне допустимо, ведь в «Комедии», как и в других своих произведениях, он выказывает прекрасное знакомство с доступными на тот момент данными.

Он был учеником Брунетто Латини, который во время пребывания во Франции с 1260 примерно до 1267 года заразился господствовавшей там энциклопедической манией и составил свой знаменитый труд Li livres dou tresor на северофранцузском языке. Как и все остальные книги такого рода, это просто компиляция сведений из классических и средневековых источников, астрономическая часть которой весьма бедна. Хотя Данте, безусловно, изучал устройство мира глубже, чем Брунетто, ни одно из его произведений не свидетельствует о каком-либо знакомстве с «Синтаксисом» Птолемея, зато больше всего он преуспел в изучении Аристотеля (с комментариями Фомы Аквинского), Плиния и особенно Аль-Фергани [В конце поэмы И Tesoretto Брунетто говорит, что встретился на горе Олимп с Птолемеем, мастером астрономии и философии, и попросил его рассказать о четырех элементах; на что Птолемей «rispose in questa guisa» («ответил так») – и тут поэма внезапно кончается!].

Он начал писать энциклопедический труд Convito, то есть «Пир», который должен был включить в себя четырнадцать книг, но закончил, однако, лишь четыре. В нем Данте более систематически изложил свои космологические идеи, приправленные доброй порцией астрологии и прочих фантазий [Изложенные в «Пире» взгляды несколько отличаются от идей «Божественной комедии», из астрономических примеров самый заметный – это пятна на Луне. В «Пире», II, 13, Данте говорит, что причина пятен на Луне – местная разреженность ее тела, от которой не могут отражаться лучи Солнца. В «Рае», II, Беатриче читает длинную лекцию о том, что эта теория ошибочна (потому что эти части в таком случае были бы прозрачны и проявлялись бы во время солнечных затмений); Луна сияет собственным светом, который отличается в разных местах из-за влияния разных водящих ее ангелов, так же как звезды в восьмой сфере отличаются яркостью по причине разных свойств, которые сообщают им движители-херувимы].
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Средневековая космология (5)

Новое сообщение ZHAN » 02 янв 2019, 09:59

В величественной поэме Данте Ад представляет собой воронкообразную пропасть, достигающую центра Земли. На ее склонах концентрическими кругами постепенно уменьшающегося диаметра расположены места наказания грешников, так что наихудшие из них находятся ближе к вершине перевернутого конуса, где в самом центре земного шара пребывает Люцифер. Когда Данте и его проводник Вергилий проходят дно пропасти и продолжают свой путь прямо, Данте оглядывается и видит Люцифера вверх ногами, и проводник поясняет ему, что теперь они начали свое восхождение на другую сторону Земли [«Ад», XXXIV, 87].

Чистилище – это большая конусообразная гора, возвышающаяся над безбрежным океаном в точке, диаметрально противоположной Иерусалиму в самой середине суши. Пройдя через семь уступов горы и достигнув земного рая на вершине, поэт наконец получает позволение подняться сквозь небесные сферы. Их, конечно, десять числом, во-первых, небо Луны (до которого доходит голубой воздух [«Чистилище», I, 13—15]), затем небеса Меркурия, Венеры (до которой достигает тень Земли [«Рай», IX, 118-119]), Солнца, Марса, Юпитера и Сатурна.

В каждом из этих небес Данте являются души, хотя и не пребывающие там постоянно, по-видимому, чтобы проиллюстрировать ему постепенно возрастающую славу, которой они признаны достойными, и указать на свои прежние характеры и темпераменты, находившиеся под преобладающим влиянием одной из семи планет [В «Пире» (II, 14—15) Данте объясняет, что первые семь сфер соответствуют тривиуму и квадривиуму семи свободных искусств. Например, Меркурий, самая маленькая планета, которую всего сильнее обволакивают солнечные лучи, соответствует диалектике, которая по объему меньше всех других наук и более затуманена, чем всякая другая наука, потому что использует софистические и неопределенные аргументы. Восьмая, или звездная, сфера соответствует физике и метафизике, девятая – нравственной философии, а десятое небо, или Эмпирей, – богословию].

Восьмое небо – сфера неподвижных звезд, девятое – сфера Перводвигателя, скорость которого практически не поддается осмыслению по причине страстного желания каждой его части соединиться с самым божественным, успокоительным небом – десятым, то есть Эмпиреем, жилищем Божества [«Пир», II, 4]. Девять сфер приводятся в движение тремя триадами ангельских существ (интеллектов), Серафимы управляют Перводвигателем, Херувимы – неподвижными звездами, Престолы – сферой Сатурна, и так далее вплоть до сферы Луны, за которую отвечают ангелы [«Пир», II, 6; там же, II, 4, о двигателях небес сказано, что «в просторечии люди называют их ангелами»].

В одиннадцатой песне «Чистилища» (108) содержится явный намек на прецессию равноденствий, или, как в то время считалось, прецессию сферы неподвижных звезд: «…и то, как звездный кружится чертог». Мы встречаем лишь одну краткую отсылку к эпициклам [«Рай», VIII, 1-3.
В погибшем мире веровать привыкли,
Что излученья буйной страсти льет —
Киприда, движась в третьем эпицикле.
(«Божественная комедия» цитируется в переводе М. Лозинского.)
Ср.: «Пир», II, 3 (с наружной стороны этой окружности в небе Венеры помещается небольшая сфера, которая вращается в этом небе сама по себе и орбиту которой астрологи именуют эпициклом), также в конце II, 5, где то же говорится о планетах вообще], иначе же говорится, что планеты просто движутся в плоскости эклиптики [«Рай», X, 7.
Так устреми со мной, читатель, зренье
К высоким дугам до узла того,
Где то и это встретилось движенье].

Любопытно прочесть о движении Солнца, что оно идет по спирали [«Рай», X, 32], как в старину говорил в «Тимее» Платон. Еще одного старого знакомого мы встречаем в утверждении, что сфера Луны движется медленнее всего [«Рай», III, 51].

Данте на протяжении всей своей жизни продолжал питать глубокий интерес к космографии. В 1320 году, за год до смерти, он прочел лекцию «О воде и суще», дабы опровергнуть мнение, порой встречавшееся в Средние века и даже позже, что вода и суша не образуют части одного и того же земного шара, а Земля состоит из сферы суши и сферы воды с несовпадающими центрами [Когда Колумб в 1498 году у берегов Южной Америки заметил, что вода там постоянно течет (из реки Ориноко) в противоположную его движению сторону, он решил, что находится у самой высокой точки моря, откуда вода льется вниз].

На этом можно закончить наш обзор средневековой космологии. Данте умер в 1321 году, почти через тысячу лет после того, как император Константин сделал христианство государственной религией Римской империи. Это был долгий период полного застоя, к концу которого человечество с точки зрения культуры оказалось ровно в том же месте, что и в самом начале, и даже, может быть, отступило назад, так как греческая наука, философия и поэзия были еще очень мало известны на Западе, поэтому невозможно было и помыслить о серьезной попытке продолжить строительство здания на заложенном ими фундаменте. На протяжении многих веков люди вяло пережевывали первую главу Бытия; затем неохотно стали прислушиваться к компиляторам вроде Плиния и Марциана Капеллы; наконец, они открыли Аристотеля и почти сразу же возвели его на пьедестал, как непогрешимый светоч.

Но на Востоке свет, когда-то сиявший из Греции, не гас на такой долгий срок. Его пламя поддерживал тот самый народ, которому, казалось бы, суждено было растоптать всякую цивилизацию, как когда-то гунны сделали в Европе; и первый импульс, в итоге пробудивший Запад, пришел от арабов. Теперь нам предстоит повернуть назад и узнать, как восточные народы воспользовались сокровищницей мысли, которую они обрели в странах, оказавшихся под их владычеством.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Астрономы Востока

Новое сообщение ZHAN » 03 янв 2019, 09:22

Завоевания Александра Великого познакомили греков с миром Востока, который прежде посещало очень мало европейцев, они же и распространили греческую культуру во всех странах, до которых смог дойти победоносный македонец. Индийские провинции его империи вскоре после его смерти получили независимость, и, хотя распространение буддизма в III веке до и. э. сдержало продвижение эллинизма в Северной Индии, подъем греческого царства Бактрии и ее постепенное расширение на юг и восток в течение долгого времени поддерживало связь между Индией и Западом. Можно сомневаться, действительно ли, как утверждалось, индийская драматургия и архитектура находились под значительным влиянием контактов с эллинизмом, но совершенно несомненно то, что индийская астрономия является детищем александрийской науки.
Изображение

В прежние времена астрономия в Индии развивалась лишь в самой незначительной степени. Индийцы имели некоторые представления о периодах Солнца и Луны и планеты Брихаспати (Юпитер), которые использовались с целью измерения времени, причем перемещения Луны особым образом диктовали моменты, когда следовало совершать жертвоприношения; но в остальном ранняя индийская астрономия, по-видимому, в основном ограничивалась астрологией, и нет никаких данных в пользу того, что точные знания о движении планет сложились в Индии раньше III века н. э. С того времени астрономия, которая дотоле являлась лишь предметом поэтических излияний, возникает как наука и в течение последующей тысячи лет трактуется в ряде учебников – сиддхант, содержание которых, якобы исходящее из божественного источника, испытало сильное влияние греческих авторов или попросту было заимствовано у них.

[Время создания основных: «Ромака» или «Паулиса-сиддханта» – не позднее 400 года н. э., «Панча-сиддхантика» Варахамихиры – около 570 года (он умер в 587 г.), «Брахмаспхута-сиддханта» Брахмагупты – около 630 года (он родился в 598 г.), «Сиддханта-широмани» Бхаскары Ачарьи – около 1150 года. «Сурья-сиддханта» в той форме, в которой она дошла до нас, вероятно, появилась в XIII веке, хотя основана на оригинале на восемь-девять веков старше.]

Тогда же впервые появляются семидневная неделя (прежде неизвестная) и посвящение каждого дня божеству одной из семи планет. Названия планет тоже стали греческими, например Асфудит (Афродита), Дьюгатих или Джива (Зевс), Хели (Гелиос) и т. п., в то время как зодиакальные знаки вытеснили двенадцать прежних, совершенно иных звездных групп, связанных с движением Солнца, и об их происхождении явно свидетельствуют их же названия: Крийя, Тавури, Джитума, Каркин, Лейя, Патхена, Джука, Каурпья, Таукшика, Акокера, Хридрога, Иттха, что соответствует греческим названиям зодиакальных созвездий: Криос, Таурос, Дидюмос, Каркинос, Леон, Партенос, Зюгон, Скорпиос, Токсотис, Айгокерос, Идрохоос, Ихтис.

Множество других греческих терминов, связанных с геометрией, астрономией и астрологией, также перешло в труды на санскрите, поэтому греческое происхождение индийской астрономии можно считать убедительно доказанным. Кроме того, его открыто признавали некоторые ранние индуистские авторы, например Варахамихира, который цитирует яванов, то есть народы Запада, как источник сделанных им научных утверждений. Название «Ромака-сиддханты» (которая появилась не позже 400 г. н. э.) также безошибочно говорит о его происхождении из провинций Римской империи.

Астрономы сиддхант учили, что Земля – шар, висящий без опоры в пространстве, и отвергали древнее мифологическое представление о том, что Земля покоится на спине некоего животного, которое, в свою очередь, стоит на спине другого животного и так далее до самого последнего, которое опирается неизвестно на что. Бхаскара Ачарья, комментируя около 1150 года н. э. абсурдность этого представления, также отвергает и идею непрерывного падения Земли, поскольку она должна падать быстрее, чем стрела, пущенная вверх, по причине своей тяжести, поэтому стрела никогда не могла бы снова упасть на Землю. Вокруг Земли движутся планеты с одной и той же линейной скоростью. Диаметр Земли составляет 1600 йоджан, расстояние до Луны – 51 570 йоджан (или 64,5 радиуса Земли, что почти равно наибольшему расстоянию у Птолемея – 641/6), в то время как расстояния до других планет вытекают из предположения о равных скоростях [Расстояния пропорциональны орбитальным периодам обращения, но для Меркурия и Венеры – периодам в эпициклах].

Уравнение центра планет находится при помощи эпицикла, и в эту систему индийцы добавляют собственное изобретение, предполагая, что эпицикл имеет переменную длину окружности, наибольшую, когда планета находится в апогее или перигее, и наименьшую, когда она находится в 90° от них, когда уравнение достигает своего максимума. Это ухищрение в виде вытянутого эпицикла одни астрономы применяли ко всем планетам, другие (Брахмагупта и Бхаскара) – только к Марсу и Венере, а третьи его полностью отвергали. Зачем нужно было так осложнять расчеты, непонятно.

Арьябхата из Кусумапури или Паталипутры, родившийся в 476 году н. э., допустил еще одно отклонение от александрийских доктрин, как это следует из «Брахмаспхута-сиддханта» Брахмагупты, где он приводит следующую цитату из Арьябхаты:
«Сфера звезд пребывает в неподвижности, а Земля, обращаясь, производит ежедневный восход и заход звезд и планет».
Брахмагупта отвергает эту идею, говоря:
«Если Земля движется на минуту за прану, то откуда и куда она направляется? Если она вращается, почему не падают с нее высокие вещи?»
Но его комментатор Чатурведа Притхудака Свами отвечает:
«Мнение Арьябхаты тем не менее удовлетворительно, ведь планеты не могут иметь два движения одновременно, таким образом опровергается возражение о том, что высокие вещи должны упасть; ибо нижняя часть Земли также и верхняя; поскольку, где бы ни стоял наблюдающий на поверхности Земли, это место и является наивысшей точкой».
Весьма интересно узнать теорию, которую когда-то пропагандировал Гераклит Понтийский, пересаженную на индийскую почву, особенно если вспомнить, что Селевк Вавилонский принимал эту теорию. Из Вавилона она могла легко попасть в Индию, хотя, конечно, в равной степени возможно, что та же мысль возникла у Арьябхаты совершенно независимо от греческих предшественников. Видимо, он списывал вращение Земли на ветер или течение воздушной среды, протяженность которого, согласно приписанной им Земле орбите, соответствует высоте чуть более 180 километров (183) от поверхности Земли, или 15 йоджан, тогда как диаметр Земли у него равен 1050 йоджанам (по 12,2 километра каждая). Это соответствовало распространенному в Индии мнению, что планеты увлекают по их орбитам мощные ветры, летящие с одинаковой скоростью параллельно эклиптике (в то время как один большой вихрь уносит все звезды вокруг Земли за двадцать четыре часа), однако планеты отклоняются от своих путей из-за каких-то невидимых сил, имеющих руки и вожжи, которыми они сбивают планеты с равномерного хода. Например, сила в апогее постоянно притягивает планету к себе, попеременно то правой, то левой рукой (как Лахесис в «Государстве» Платона), в то время как божество в узле отклоняет планету от эклиптики сначала в одну сторону, а затем в другую. И наконец, божество в точке соединения заставляет планету двигаться с переменной скоростью и иногда останавливаться и даже поворачивать вспять. Это с полной серьезностью изложено в «Сурья-сиддханте», и даже Бхаскара приводит эту теорию в своих примечаниях, хотя и опускает ее в основном тексте. Точно так же Брахмагупта, излагая теорию затмений, подтверждает существование восьмой планеты – Раху, которая является непосредственной причиной затмений; он обвиняет Варахамихиру, Арьябхату и прочих в отказе от этого ортодоксального объяснения данного феномена.

Индийская астрономия, таким образом, являет собой любопытную мешанину из древних фантастических идей и трезвых геометрических методов расчета. Последние в силу своего иноземного происхождения не могли изгнать старых понятий из астрономии. Как заметил Коулбрук, отсутствие самых характерных частей системы Птолемея – экванта и подробностей теорий Луны и Меркурия, по всей видимости, указывает на то, что греческая планетарная теория появилась в Индии позже Гиппарха и раньше Птолемея; и, за исключением отклонения эпицикла от круговой формы, индийцы не внесли в теорию никаких изменений или усовершенствований. Прецессия равноденствий, по их мнению, состояла в либрации в пределах 27° (у Арьябхаты 24°) к востоку и западу от среднего положения, однако они подошли гораздо ближе к истине, чем Птолемей, в отношении годовой величины, так как предполагали, что пройденное расстояние за век составляет I½°.

Несмотря на полную изоляцию Индии от Европы в Средневековье, индийской астрономии все же было суждено оказать косвенное влияние на развитие мировой науки. Благодаря завоеванию Персии в VII веке арабы, как и греки на тысячу лет раньше, вступили в контакт с Индией, откуда врачи и астрологи попали ко двору халифов еще до воцарения Харуна ар-Рашида.

Мы располагаем подробным рассказом о том, каким образом индийская астрономия появилась в Багдаде, рассказом, вышедшим из-под пера астронома Ибн аль-Адами (умер до 920 г.), который подтвержден в знаменитых мемуарах об Индии Аль-Бируни, написанных в 1031 году.

В 156 году хиджры (773 г.) перед халифом Аль-Мансуром предстал человек, прибывший из Индии; он был мастером в исчислении звезд, известном как синдхинд (то есть сиддханта), и владел методами решения уравнений на основе кардаджат (то есть крамаджья, синусов), рассчитанных для каждой половины градуса, а также методами расчета затмений и других явлений. Аль-Мансур заказал перевести на арабский книгу, в которой все это содержалось, и составить на ее основе труд, который мог бы послужить для расчета движения планет. Все это должным образом исполнил Мухаммад бен Ибрахим аль-Фазари, чьи труды арабы называют «Большой Синдхинд», и впоследствии Абу Джафар Мухаммад ибн Муса аль-Хорезми составил его краткое изложение для Аль-Мамуна, который использовал его для подготовки своих таблиц, получивших затем большую известность в мусульманских странах. А когда Аль-Мамун стал халифом, он стал поддерживать эти благородные изыскания и созвал самых образованных мужей, чтобы исследовать «Альмагест» и сделать инструменты для новых наблюдений.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Астрономы Востока (2)

Новое сообщение ZHAN » 04 янв 2019, 12:04

Случай, изложенный выше вкратце, ясно показывает нам, откуда пошло изучение астрономии и математики при халифах-Аббасидах. Но хотя первый толчок они получили из Индии, дальнейшее развитие арабской науки было полностью основано на греческой и александрийской мысли. Через придворных врачей процветающей медицинской школы, которую держали христиане-несториане из Хузистана, изучение греческой философии и науки впервые стало распространяться среди подданных халифата; и труды Аристотеля, Архимеда, Евклида, Аполлония, Птолемея и других математиков постепенно переводились на арабский язык.

Новые переводы Птолемея время от времени появлялись в разных царствах, на которые вскоре распался обширный халифат [Самый ранний, вероятно, перевод Аль-Хаджаджа ибн Юсуфа ибн Матара начала IX века], и таким образом глубокие познания в астрономии Птолемея стали обычными на землях от Инда до Эбро. Несколько факторов способствовали тому, что мусульмане обратили особое внимание на астрономию, например необходимость определять сторону, к которой должны поворачиваться правоверные во время молитвы, а также важность движения Луны для мусульманского календаря, и то уважение, которым по всему Востоку пользовалась предсказательная астрология.

Халиф аль-Мамун, сын Харуна ар-Рашида (813—833), был первым великим покровителем науки, хотя халифы-Омейяды еще задолго до того построили обсерватории близ Дамаска и еще до правления Аль-Мамуна еврей Машаллах (который умер около 815 г.) приобрел себе славу в качестве звездочета и астролога. Однако дамасскую обсерваторию совершенно затмила багдадская, возведенная в 829 году, где непрерывно велись наблюдения и составлялись таблицы движения планет, а также была сделана важная попытка определить размер Земли.

Среди астрономов Аль-Мамуна и его наследников одним из величайших был Ахмад бен Мухаммад аль-Фергани (впоследствии известный на Западе под именем Альфраганус), чьи «Элементы астрономии» были переведены на латинский в XII веке и внесли большой вклад в возрождение науки в Европе [Впервые отпечатаны в Ферраре в 1493 году].

Сабит ибн Курра (826—901) был чрезвычайно плодовитым писателем и переводчиком, но в истории астрономии больше всего известен тем, что поддерживал ошибочную гипотезу о колебательном движении равноденствий. Его младший современник Мухаммад аль-Баттани (умер в 929 г.) был самым прославленным среди всех арабских астрономов и стал известен на Западе в XII веке (под именем Альбатегний) по переводу введения к его таблицам [Перевод сделан Платоном из Тиволи. Впервые напечатан в 1537 году после книги Аль-Фергани]. Уже в его время халифы начали терять авторитет и вскоре утратили всякую светскую власть. Однако сокращение их поддержки никак не повлияло на изучение астрономии, так как персидский род Бундов, которые в 946 году приобрели пост амира аль-умара (соответствующий франкскому майордому), взял на себя роль покровителей науки, которую столь долго и с честью осуществляли халифы - Аббасиды.

В 988 году Шараф аль-Даула построил новую обсерваторию в саду своего дворца, и среди работавших там астрономов был Абуль-Вафа Мухаммад аль-Бузджани (959—998), который написал «Альмагест», чтобы сделать содержание птолемеевского труда доступным и для менее образованных людей. В XIX веке эта книга вызвала продолжительную полемику, которую мы далее рассмотрим несколько подробнее.

В XI и XII веках мы не находим видных астрономов в мусульманской Азии. Однако между тем западные исламские страны уже готовились к тому, чтобы тоже внести свой вклад в поддержание математических наук. В фатимидском Египте Али ибн Абу Саид Абдеррахман ибн Ахмед ибн Юнус, обычно называемый ибн Юнус (умер в 1009 г.), прославился и как астроном, и как поэт. Щедро оборудованная каирская обсерватория позволила ему проверить планетные теории, когда-то разработанные в соседней Александрии, и в знак признательности тогдашнему правителю Аль-Хакиму он назвал свою работу «Зидж аль-Хакими» – «Таблицы аль-Хакима».

Чтобы найти следующего астронома, нам нужно отправиться дальше на запад, где мы встречаем его в лице Абу Исхака Ибрахима аз-Заркали (в Европе впоследствии названного Арзахель). Он был родом из Кордовы, жил около 1029—1087 годов и работал над планетными таблицами, получившими название Толедских. В следующем столетии мы находим двух знаменитых севильских астрономов: это Джабир ибн Афлах, известный на Западе под именем Гебер (умер в 1145 г., его часто путают с великим алхимиком Джабиром ибн Хайяном VIII века [Иногда с его именем ошибочно связывают слово «алгебра»]), и Нур ад-Дин аль-Битруджи (Альпетрагий). Оба они выступали против планетных теорий Птолемея, хотя сами не произвели ничего лучшего.

Расцвет испанской астрономии продолжался какое-то время, хотя власть арабов на полуострове быстро слабела, и в XIII веке Испании удалось произвести на свет выдающегося человека, которого, хотя он и был христианским королем, следует упомянуть в обзоре арабской астрономии, поскольку всем, что он знал о науке, он был обязан примеру и учению мусульман и евреев. Король Кастилии Альфонсо X, прозванный Эль-Сабио (Мудрый, 1252—1284), последовал примеру халифов и призвал астрономов к своему двору, где они участвовали в подготовке знаменитых Альфонсовых таблиц.

После Альфонсо в Испании прекратилось изучение астрономии, но не раньше того, как оно возродилось на Востоке. В 1258 году багдадский халифат, еще существующий, но уже лишь как тень былого, был сметен монгольским завоевателем ханом Хулагу, внуком Чингисхана; но уже в следующем году этот великий воитель прислушался к совету своего нового визиря Насир ад-Дина ат-Туси (родился в Тусе, Хорасан, в 1201 г., умер в 1274 г.) и основал большую, великолепную обсерваторию в Мераге, в Северо-Западной Персии. В этой обсерватории, оснащенной множеством инструментов, частично новой конструкции, Насир ад-Дин и его помощники усердно наблюдали за планетами и после двенадцати лет труда произвели «Ильханские таблицы». Среди астрономов Мераге, по-видимому, был Абуль-Фарадж ибн Харун по прозвищу Бар-Эбрей, то есть «сын еврея». Он родился в 1226 году, был христианином, а с 1264 года до смерти в 1286 году – мафрианом, то есть главой восточных якобитов. Он оставил известную летопись [Его «Хроника» является главным источником предания о сожжении александрийской библиотеки халифом Омаром] и астрономические труды, написанные по-сирийски, а также другие сочинения.

Обсерватория в Мераге просуществовала недолго, и азиатской астрономии пришлось прождать полтора века, прежде чем внук другого ужасного завоевателя не воздвиг новую обсерваторию. Улугбек, внук Тамерлана, свез ученых людей в Самарканд и около 1420 года построил там обсерваторию, где были подготовлены новые планетные таблицы и новый звездный каталог впервые со времени Птолемея. Улугбек умер в 1449 году, он был последним великим защитником астрономии на Востоке; но в то самое время, когда в странах востока звезда Урании клонилась к закату, Европа снова увидела ее восход.

В этом кратком обзоре арабских астрономов мы упоминали только о тех, на чьи труды будем ссылаться на следующих страницах, и опустили несколько имен, чьи прославленные владельцы посвятили себя другим областям астрономии. Хотя Европа находится в долгу у арабов за сохранение живого пламени науки в течение многих веков и за наблюдения, которые до сих пор отчасти не потеряли ценности, мы не можем отрицать, что они оставили астрономию в основном в том же виде, в каком и нашли. Арабы заново определили несколько важных констант, но не внесли никаких улучшений в планетные теории. Поэтому будет достаточно перечислить, что пытались усовершенствовать и каких взглядов придерживались арабские астрономы, без соблюдения строго хронологического порядка, хотя здесь нам придется иметь дело с периодом около шестисот лет и представителями очень разных народов, которые имели друг с другом мало общего, помимо религии и языка, на котором они писали.

Обратившись в первую очередь к вопросу о форме Земли, мы находим примечательный контраст между Европой и Азией. Во всем исламском мире совершенно отсутствует та враждебность по отношению к науке, которая отличала Европу первой половины Средневековья. Хотя из «Космографии» Закарии аль-Казвини мы узнаем, что некоторые арабы в прошлом считали, будто Земля имеет форму щита или барабана, у нас все же нет никаких сведений о каких-либо гонениях на арабов, утверждавших, что Земля является шаром, со всех сторон которого могут обитать люди. Было ли это следствием того, что воины халифов дошли в своих походах до центра Франции с одной стороны и до границ Китая с другой, в то время как их купцы путешествовали на юг до Мозамбика и на север до центра Азии, это другой вопрос; во всяком случае, сам факт, что Земля является шаром очень малого размера по сравнению с размерами Вселенной, принимался без возражений всеми арабскими учеными, и самая первая научная работа, предпринятая после возникновения арабской астрономии, состояла в определении размера Земли. Она проводилась по приказу халифа Аль-Мамуна на равнине у Пальмиры. Как рассказывает Ибн Юнус, длину градуса измеряли два наблюдателя между Вамией и Тадмором и еще два в другом населенном пункте, название которого умалчивается. Первое измерение дало величину градуса 57, второе – 56¼ арабской мили по 4000 черных локтей, и приблизительное среднее значение – 56⅔ мили – было принято в качестве окончательного результата. Таким образом, окружность Земли равна 20 400 арабским милям, а диаметр – 6500 милям. Другой отчет – Ахмада ибн Абдуллаха, известного под именем Хаббаш Аль-Хасиб, астронома при Аль-Мамуне (которого цитирует Ибн Юнус), утверждает, что группа наблюдателей (их имена не сообщаются) продвигалась по равнине Синджар и нашла разницу меридиональных высот, измеренную в тот же день, равную 1°, в то время как расстояние, которое они прошли, составило 56¼ арабской мили.

[Есть упоминания о третьем отчете, согласно которому сыновья Мусы сперва проводили измерения на равнине Синджар, а затем перепроверили их в Куфе по приказу Аль-Мамуна. Старший из сыновей Мусы умер через 41 год после Аль-Мамуна, и имена наблюдателей в первом отчете отличаются, так что на третий полагаться не следует. Аль-Фергани всего лишь указывает в качестве результата Аль-Мамуна 56⅔ мили. Ала ад-Дин Али Аль-Кушчи (один из астрономов Улугбека) приводит окружность Земли равной 8000 парасангов. Так как персидский парасанг равен 30 стадиям, представляется, что это то же значение, которое приводит Посидоний, – 240 000 стадиев. Аль-Казвини указывает окружность Земли 6800 парасангов, ссылаясь на авторитет Аль-Бируни].

Вероятно, это два разных измерения. Если «черный локоть» равен египетскому и вавилонскому локтю, равному 525 миллиметра, то арабская миля = 2100 метра, а 56⅔ мили = 119 000 метров – довольно большое число.

Доктрина шарообразной Земли остается неоспоримой в ученом мусульманском мире, хотя любопытное заблуждение о том, что уровень моря в некоторых частях Земли выше, чем в других, видимо, нашло своих сторонников в среде арабских авторов, как и в Европе [Следует упомянуть, что Шамсуддин ад-Димашки (1256—1327) объясняет огромное преобладание суши в Северном полушарии притяжением воды к Солнцу, которое больше всего, когда Солнце находится в перигее, то есть в момент почти максимального южного склонения. Ему не приходит в голову, что такое скопление воды не может быть постоянным]. Поэтому мы можем сразу же перейти к движениям небесных тел.

Аль-Баттани определил долготу апогея Солнца и нашел ее равной 82°17′ [Он также говорит, что апогеи Солнца и Венеры составляют 82°14′, а Ибн Юнус также приводит 82°14′ в качестве значения, найденного Аль-Баттани], или на 16°47′ больше, чем у Птолемея. Так как он считал, что нашел значение Птолемея, и так как он принял 54″ (или 1° за 66 лет) в качестве годовой величины прецессии, в расчетах (учитывая, что со времен Птолемея прошло 760 лет) осталась огромная ошибка 79″ – 54″ = 25″ в год. В действительности годовое движение солнечных апсид составляет 11½″, но все же можно сказать, что открытием этого движения мы обязаны Аль-Баттани, хотя он и не объявляет его открытием; фактически он просто приводит свое собственное значение как улучшенное птолемеевское. Даже Ибн Юнус (который нашел 86°10′) не подозревает, что апогей неуклонно сдвигается, но говорит лишь о том, что необходимо внести поправку на прецессию (1° за 70 лет), а также отмечает, что долготу апогея очень трудно определить с точностью [Абуль-Фарадж приводит 89°28′ для 1279 года]. С другой стороны, Аз-Заркали нашел меньшее значение – 77°50′, а так как он нашел и меньшее значение эксцентриситета, он посчитал необходимым допустить, что центр эксцентрической орбиты Солнца описывает меньший круг, по примеру, заданному Птолемеем для Меркурия. Наклонение эклиптики, которое греки нашли равным 23°51′20″, астрономы Аль-Мамуна нашли равным 23°33′ (в 830 г.), Аль-Баттани (в 879 г.) и Ибн Юнус – 23°35′ [На 900 год Ньюком дает 23°34′54″, с уменьшением на 46″ на 100 лет, таким образом, арабские астрономы ошиблись менее чем на Г.].

Когда Аз-Заркали нашел 23°33′, он, а потом и Абуль Хассан из Марокко, пришел к выводу, что наклонение колеблется между 23°53′ и 23°33′, и вера в «трепет» равноденствий придала достоверность этой идее.

Если теперь мы обратимся к Луне, то обнаружим, что арабы никак не улучшили находок Птолемея. Некоторые заметили, что наклон лунной орбиты составляет не совсем 5°, как указано у Гиппарха. Так, Абуль Хасан Али ибн Амаджиур в начале X века говорит, что часто измерял максимальную широту Луны и нашел, что она больше, чем у Гиппарха, но при этом значительно и неупорядоченно варьируется. Ибн Юнус, цитируя это, добавляет, что он сам нашел 5°3′ или 5°8′, тогда как другие наблюдатели говорят, что нашли значения от 4°58′ до 4°45′ [Сыновья Мусы ибн Шакира (около 850 г.), видимо, первыми нашли значение, отличное от античного. Авраам бар-Хия, еврейский автор, живший около 1100 года, говорит, что Птолемей нашел 5°, но, по мнению исмаилитов, это 4½°]. Так из-за недостатка упорства и точных инструментов они проглядели замечательное открытие вариаций наклонения Луны.

Однако некоторые утверждают, что арабскому астроному принадлежит и еще более замечательное открытие. В 1836 году младший Седийо объявил, что нашел третье неравенство, вариацию, четко заявленную в «Альмагесте» Абуль-Вафы. В течение нескольких лет бушевали ожесточенные споры касательно достоверности этого открытия, причем Седийо в одиночку отчаянно защищал своего героя и отказывался выслушивать какие-либо доводы, тогда как Био, Либри и другие с такой же настойчивостью утверждали, что Абуль-Вафа всего лишь говорил о второй части эвекции, просневсисе Птолемея. Дискуссия сошла на нет, когда в 1862 году Шаль вдруг подхватил оружие, выпавшие из рук Седийо, и указал, как ему казалось, на некоторые противоречия в утверждении Птолемея. Никто не ответил на вызов до того, как это сделал Бертран в 1871 году; он обратил внимание на несколько неточностей в тексте Абуль-Вафы, которым мы располагаем сейчас, а также показал, что Абуль-Вафа не прибавил свой «мохазат» к просневсису, так как просневсис не был включен в его «вторую аномалию». У нас нет необходимости вдаваться в дальнейшие подробности спора; но, дабы показать, что любое [Следует упомянуть, что Шамсуддин ад-Димашки (1256—1327) объясняет огромное преобладание суши в Северном полушарии притяжением воды к Солнцу, которое больше всего, когда Солнце находится в перигее, то есть в момент почти максимального южного склонения. Ему не приходит в голову, что такое скопление воды не может быть постоянным] оружие считалось достаточно хорошим для защиты Абуль-Вафы, можно отметить, что Седийо и Шаль пытались доказать, будто Тихо Браге скопировал свое открытие у Абуль-Вафы, так как называет его hypothesis redintegrata. Браге употребил это же выражение, говоря о собственной планетной системе, о которой самым решительным образом заявлял, что она является его оригинальным открытием, и которую активно защищал от других претендентов. В будущем любой, кто хотел бы приписать открытие Абуль-Вафе, лишится всякой надежды, поскольку этот вопрос к настоящему времени тщательно изучен как математиками, так и востоковедами.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Астрономы Востока (3)

Новое сообщение ZHAN » 05 янв 2019, 16:16

«Альмагест» Абуль-Вафы никогда не опубликовался в полном объеме, однако есть три перевода глав, о которых идет речь, которые отличаются лишь в нескольких мелочах. Ни в одном месте книги он не опережает Птолемея и не утверждает, что сделал какое-либо новое открытие, а, говоря о трех неравенствах, просто делает то же, что и другие арабские астрономы. Он начинает с описания первого (уравнение центра) и второго (эвекция) и указывает, когда они достигают максимумов. Затем он говорит, что мы нашли [Он использует то же самое выражение, говоря о первом и втором неравенствах.] третье неравенство, которое имеет место, когда центр эпицикла находится между апогеем и перигеем эксцентра, и которое достигает максимума, когда Луна находится примерно в «таслис» или «тасдис» от Солнца, притом что оно нечувствительно в сизигии и квадратуре. Максимум – ¾°. Он объясняет, что это вызвано отклонением линии апсид в эпицикле, и совершенно правильно описывает механизм, принятый Птолемеем (имени которого он не называет), допуская, что линия апсид направлена не к Земле, а к другой точке на линии апсид эксцентра. Непредвзятому читателю трудно понять, как можно не увидеть, что Абуль-Вафа просто копирует Птолемея.

Седийо утверждал, что слова «таслис» и «тасдис» означают октанты (где вариация достигает максимума); но любой другой востоковед, который высказался по этому поводу, утверждает, что слова, судя по их корням, соответствуют числам 6 и 3, другими словами, элонгациям 60° и 120° от Солнца. Это согласуется с фактами, так как Био на основании числовых данных у Птолемея показал, что отклонение линии апсид достигает максимального значения ±13° 8,9′ в элонгациях 90° + 32°57,5′ [Это отклонение не представляет величину поправки на положение Луны с точки зрения земного наблюдателя, так что Птолемей не допускает противоречий].

Но следует признать, что слова, о которых идет речь, также используются очень неопределенно, например, самим Абуль-Вафой, который говорит, что скорость высших планет после выхода из солнечных лучей постепенно уменьшается, пока их расстояние от Солнца не составит примерно «таслис», когда они останавливаются. Это почти выглядит так, будто эти слова могут обозначать любую элонгацию вне сизигии и квадратуры [У арабов нет слова «октант». В одном случае Насир ад-Дин хочет о них сказать, и ему приходится называть их «точками посередине между сизигией и квадратурой»].

Если бы Абуль-Вафа действительно сделал открытие, следовало бы ожидать от последующих арабских астрономов каких-либо указаний на него. Но ни один из них не приводит ничего, кроме интерпретаций лунной теории Птолемея, и в таких выражениях, которые очень похожи на использованные у Абуль-Вафы. На этот факт сразу же обратили внимание и привели в пример Исаака Исраэли Толедского (около 1310 г.) и Джабира Севильского [Исаак Исраэли неоднократно говорит о неравенствах, открытых Птолемеем, два из которых не находятся в точках соединения и противостояния.], хотя, конечно, вполне возможно, что эти два автора оставались в неведении относительно возможного прогресса багдадской школы философии.

Но это возражение не относится к Насир ад-Дину ат-Туси, в чьем обзоре «Альмагеста» и «Памятке по астрономии» описаны известные Птолемею неравенства, и никакие другие, и авторство их отдано Птолемею [«Третья – аномалия просневсиса; она называется уравнением собственного движения» (то есть движения на эпицикле)]; также и у Махмуда аль-Джагмини (около 1300 г.), написавшего компендиум (мулаххас) астрономии [Он описывает, что линия апсид направлена к точке, которая называется «соответствующей», и правильно указывает ее положение. Неравенство он называет отклонением].

Нельзя возразить и против слов Абуль-Фараджа (Бар-Эбрея), и невозможно объяснить эффект просневсиса яснее, чем это делает он. Он говорит:
«Третье неравенство – угол, образованный в центре эпицикла двумя линиями, которые проведены одна из центра Вселенной, а другая из точки, называемой просневсис, в конце которой находится апогей эпицикла, где начинается собственно движение и которая называется средним апогеем. Апогей, который находится в конце линии, проведенной из центра Вселенной, называется видимым. Точка просневсиса находится на стороне перигея эксцентра в 10 частях 17 минутах от центра мира [Насир ад-Дин указывает 10 частей 9 минут], которая сама находится на том же расстоянии от центра эксцентра. Максимальное значение этого угла составляет 13 частей 9 минут, когда Луна является полумесяцем, или ¼ серпа, то есть рядом с шестиугольником или треугольником с Солнцем. Когда эпицикл находится в четырех или восьми знаках от апогея эксцентра, Солнце находится в двух или четырех знаках от [центра] эпицикла, то есть на полпути между этим центром и апогеем. В таблицах это неравенство двух апогеев называется первым углом и включается в движение центра»
[В двух списках после слова «просневсис» значится: «Это точка мохазат»].

Здесь мы видим совершенно отчетливое описание птолемеевской системы, и в то же время оно прекрасно согласуется с изложением у Абуль-Вафы. Абуль-Фарадж (как и Насир ад-Дин) даже приводит в качестве четвертого неравенства по долготе то, что вызывается движением по орбите, наклоненной к плоскости эклиптики, так что он не упустил бы описать вариацию, если ее действительно обнаружил багдадский астроном. Можно добавить, что еврейский автор Авраам бар-Хия (1100 г.) в своей Sphaers mundi, «Форме земли», также описывает «аберрацию» эпицикла апсид, главным образом «in sexta et tertia parte mensis» [Слова «шестая» и «третья» в тексте не вызывают никаких сомнений. Видимо, до этого никто не подумал справиться у Бар-Хии].

Следовательно, Абуль-Вафа не знал ничего о движении Луны, кроме того, что заимствовал у Птолемея. Но просневсис Птолемея – не та вариация, которую обнаружил Тихо Браге. Последняя зависит только от элонгации Луны от Солнца, так как она равна + 39,5′ sin 2ε, тогда как выразить эффект просневсиса без аномалии неподвластно смертному человеку. У Птолемея выражение для всех предполагаемых им неравенств по долготе при разложении содержит, помимо членов, представляющих уравнение центра и эвекцию, причем последняя равна
+ 1°19,5′ sin(2ε – m),
весьма существенный член
+ 17,8′ sin 2ε [cos(2ε + m) + 2 cos (2ε – m)],
где в – это элонгация, am – средняя аномалия.

Очевидно, что этот член не имеет ничего общего с вариацией, за исключением того, что он исчезает в сизигиях и квадратурах. Тихо Браге не прибавил свой новый элемент к неизмененной лунной теории Птолемея, да и фактически таким образом мы бы просто исказили его теорию, так что максимальная ошибка достигла бы более чем 3°.

По той причине, что Птолемей не располагал достаточными результатами наблюдений, он мог лишь исходить из того, что и после учета эвекции остаются некоторые весьма заметные неравенства, проявляющиеся только вне сизигий и квадратур, но он не смог найти закон, управляющий этим явлением, и не знал, насколько большую величину оно представляет; он мог только слегка корректировать свои построения, и в этом за ним самым добросовестным образом следовали арабы, которые ничего не прибавили к сделанному им и предоставили обнаружить третье лунное неравенство человеку, кому суждено было вдохнуть новую жизнь в практическую астрономию.

Переходя к пяти планетам, мы находим, что, вообще говоря, арабы предприняли очень мало попыток усовершенствовать работу Птолемея. Однако они не удовольствовались использованием системы Птолемея исключительно в качестве вспомогательного геометрического способа вычислений; им нужна была реальная, физически истинная система мироздания, и потому они принимают на веру существование твердых хрустальных сфер на манер аристотелевских. Над Луной находится аль-афир, пятая сущность, лишенная легкости и тяжести и не воспринимаемая человеческими чувствами; из этого вещества образуются сферы и планеты (Аль-Баттани). Уже в книге Аль-Фергани мы находим принцип, который, как мы видели, появляется еще в V веке (Прокл) и становится общепризнанным в Средние века, гласящий, что наибольшее расстояние до планеты равно наименьшему расстоянию до планеты, расположенной сразу же над ней, таким образом, что между сферами не остается пустых пространств [Гораздо позже Мавролико в своей «Космографии» доказывает, что Меркурий и Венера должны находиться ниже Солнца, потому что иначе между Солнцем и Луной должно быть огромное пустое пространство].

По Аль-Фергани, полудиаметр Земли равен 3250 милям, что почти соответствует 56⅔ мили Аль-Мамуна вплоть до градуса, если принять π = 22/7. Исходя из расстояний до Луны и Солнца у Птолемея, легко выразить другие расстояния в полудиаметрах Земли, так как соотношение между максимальным и минимальным расстояниями хорошо вписывается в теорию Птолемея. Аль-Баттани приводит аналогичный ряд цифр, хотя и с некоторыми небольшими различиями. Он умалчивает о том, как своеобразно трактовал Птолемей теорию Меркурия. В приведенной ниже таблице указаны расстояния в полудиаметрах Земли:
Изображение

Аль-Кушчи, один из астрономов Улугбека, приводит перечень полудиаметров «углублений» планетных сфер (то есть наименьших расстояний), выраженных в парасангах, причем диаметр Земли составляет 2545 парасангов. Выраженные в полудиаметрах Земли, цифры несколько отличаются от приведенных выше, например, наименьшее расстояние до Солнца составляет 1452, а наибольшее до Сатурна – 26 332, но он ничего не сообщает о том, как были найдены эти значения.

Перед тем как оставить эту тему, приведем диаметры планет по Аль-Фергани, так как они стали известны в Европе очень рано и на них ссылались Роджер Бэкон и другие [Есть некоторые мелкие различия в цифрах, указанных в разных изданиях (я сравнил издания 1493, 1546 и 1669 гг.), но приведенные выше согласуются с данными у Аль-Фергани. Данные у Аль-Казвини, по-видимому, были сильно искажены]. При несущественных различиях Аль-Баттани, Абуль-Фарадж и Авраам бар-Хия приводит одни и те же цифры:
Изображение

Система сфер наиболее подробно изложена в трех более поздних трактатах: космографии Закарии ибн Мухаммада ибн Махмуда аль-Казвини (около 1275 г.), астрономии Абуль-Фараджа, написанной в 1279 году, и астрономии Махмуда ибн Мухаммада ибн Омара аль-Джагмини, о котором одинаково неизвестно, когда он жил и кто был по национальности, но, вероятно, он писал в XIII или XIV веке. В этих учебниках мы находим сложную систему сфер, которая должна была учитывать все особенности движения планет в полном согласии друг с другом в общем порядке сфер, но не предложила ничего нового в теории Луны и других планет. Прилагаемые рисунки (взятые из Аль-Джагмини) лучше проиллюстрируют идеи, чем длинное описание [Аль-Кушчи приводит очень похожие схемы сфер Сатурна, Меркурия и Луны].
Изображение
1 – Солнце; 2 – эксцентрическая сфера; 3 — окружающая сфера; 4 – комплемент окружающей сферы; 5 – центр мира; 6 — центр эксцентрической сферы

Солнце представляет собой сплошное шарообразное тело между двумя эксцентричными сферическими поверхностями, которые касаются двух других поверхностей, в общем центре которых находится Земля и которые между собой заключают пространство (или междусферие, как называет его Абуль-Фарадж), названное у Аль-Джагмини аль-муматталь, или равновращающаяся сфера, которая совершает то же движение с запада на восток, что и неподвижные звезды, то есть имеется в виду прецессия.

Сферы трех внешних планет и Венеры изображены на том же плане, за исключением того, что место тела Солнца занимает сфера-эпицикл каждой планеты, на внутренней поверхности которой прикреплена планета (сплошное шарообразное тело), или (как говорит Абуль-Фарадж) «вставлена, как жемчужина в кольце, касаясь поверхности в одной точке». Ось эксцентрической сферы наклонена к оси сферы аль-муматталь, что вызывает смещение по широте.

Лунная система включает в себя дополнительную сферу за пределами других, центр которой совпадает с центром мира и которая называется аль-джавзахар, что означает созвездие Дракона, так как эта сфера обеспечивает обращение лунных узлов («головы и хвоста дракона») по зодиаку [Предполагается, что сюда включена прецессия, «первое движение». Второе – движение концентрического наклонного междусферия (называемого маиль или sphaera deflectens) вокруг центра мира на 11°9′ в день, на это расстояние лунный апогей смещается к западу. Третье – движение эксцентра, уносящего центр эпицикла на 24°22′ к востоку. Четвертое – движение эпицикла].

Внутренняя из двух концентрических сферических поверхностей, между которыми лежит эксцентрическая сфера, непосредственно окружает огненную сферу Земли. Система Меркурия сложнее, так как должна предусматривать пространство для вращения центра эксцентрической сферы. На рисунке показана эксцентрическая сфера, заключенная в сферу, аль-мудир, или вращающаяся, которая позволяет верхней апсиде или апогею эксцентра или деферента (3 на рисунке) двигаться вправо по наружной сфере аль-мудир. Внутренняя поверхность сферы аль-муматталь непосредственно окружает сферу аль-джавзахар Луны.

Необходимым следствием принятого Птолемеем большого солнечного параллакса в У было то, что Меркурий и Венера оказались на очень близком расстоянии от Земли, так как считалось, что они ближе, чем Солнце. Так, Авраам бар-Хия говорит, что тень Земли простирается за пределы орбиты Меркурия, но не доходит до Венеры. Птолемей никогда не говорит о параллаксах Меркурия и Венеры, о которых ничего не было известно, хотя, конечно, они должны были быть больше 3′. Но исходя из того, что наименьшее расстояние до Меркурия равно расстоянию до Луны в апогее, параллакс Меркурия должен вырасти до 54′, а такое значение наверняка показалось бы слишком большим, хотя, кажется, Аль-Баттани не нашел в нем ничего странного, возможно, потому, что Меркурий не виден в момент нижнего соединения. Быть может, именно большой параллакс Меркурия побудил Ибн Юнуса (без каких-либо объяснений) уменьшить солнечный параллакс с 3 до 2′ или, вернее, до 1 ′57″.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Астрономы Востока (4)

Новое сообщение ZHAN » 07 янв 2019, 16:56

Изображение
Сферы Меркурия
1 — верхняя апсида; 2 – нижняя апсида; 3 — верхняя апсида деферента; 4 — нижняя апсида деферента; 5 – деферент; 6 — эпицикл; 7 – Меркурий; 8 — окружающий комплемент; 9 — окруженная часть сферы аль-муматталь; 10 — сфера аль-мудир; 11 — центр мира; 12 – центр аль-мудир; 13 — центр деферента


Джабир упрекает Птолемея за то, что тот назвал параллаксы планет несущественными, и замечает, что логически он должен был в таком случае поместить Венеру и Меркурий над Солнцем. Он прилагает большие усилия, чтобы показать, что Венера может находиться точно на линии, соединяющей Солнце и Землю. Фактически Джабир не упускает ни единой возможности раскритиковать методы Птолемея для нахождения элементов орбит [Среди прочего он порицает Птолемея за то, что тот просто допускает, что центр деферента находится на полпути между центрами зодиака и экванта, в то время как он сам выводит это из движений.] и, как правило, очень несправедлив по отношению к греческому ученому, хотя и не рискует заменить систему Птолемея на какую-либо иную и не возражает против ее общих принципов [У Коперника был экземпляр книги Джабира, и заметки на полях показывают, что он внимательно ее читал].

Попытки Джабира выискать недостатки в работе Птолемея, пожалуй, были связаны с быстрым ростом популярности аристотелевской философии в Испании XII века, и, хотя этот процесс продлился недолго, все же он сыграл значительную роль в распространении трудов Аристотеля в христианском мире, а также создал ореол вокруг Кордовского халифата, который в ту эпоху просвещенного правления Альмохадов, казалось, возродил славу золотых дней мусульманского мира.

Три имени особым образом связаны с этим течением: Абу Бекр Мухаммад ибн Яхья ас-Саиг, называемый ибн Баджа (Сарагоса, умер в 1139 г.), известный среди схоластов под именем Авемпас; его ученик Мухаммад ибн Абдул-Малик ибн Туфайль (Гранада, умер в 1185—1186 г.), Абубацер у схоластов; и, наконец, величайший философ ислама Абуль-Валид Мухаммад ибн Рутттд, известный как Аверроэс (1126—1198).

Изучая Аристотеля, они обращали особое внимание на его научные труды и, в отличие от своих христианских преемников, не пренебрегали всем остальным, кроме диалектики. Поэтому арабским философам казалось необходимым принять систему гомоцентрических сфер или какую-то ее модификацию, и, разумеется, это заставило их отказаться от теории эпициклов. То малое, что нам известно о взглядах Ибн Баджи по этому вопросу, можно найти в известном труде «Путеводитель растерянных» великого еврейского ученого Моше бен Маймона из Кордовы, более известного под именем Маймонид, который говорит нам, что получил свои сведения от ученика Ибн Баджи. Как и Джабир (с чьим сыном он был знаком), Маймонид сомневался, что Меркурий и Венера ближе к Земле, чем Солнце, хотя не рисковал сказать, как они на самом деле движутся. Но, что еще важнее, он объявил, что движение планеты на эпицикле противоречит принципам физики, потому что в этом мире возможны только три движения: вокруг его центра, к нему или от него; в то же время он утверждал, что, по Аристотелю, круговое движение может совершаться только вокруг реального центрального тела. Хотя Аристотель на самом деле не возражает против эпициклического движения с центром в математической точке по той простой причине, что, когда он писал, оно еще не было предложено, притом что, как мы уже видели, его принцип движения не имел ничего общего с центром движения, легко понять, что перед Ибн Баджей в действительности стояла та же проблема, которая впоследствии породила столько препятствий на пути развития науки в Европе: если чего-то нет в книгах Аристотеля, значит, это недостойно внимания.

Согласно Маймониду (который, однако, делает оговорку, что он не слышал этого от учеников), Ибн Баджа создал собственную систему, в которой допустил только эксцентры, но не эпициклы. Он ничего не сообщает об этой системе, но вряд ли можно сомневаться, что ее автор ограничился общими фразами и не пытался отобразить в ней таких явлений, как лунные неравенства. Маймонид замечает, что своей реформой Ибн Баджа ничего не добился, ведь гипотеза эксцентров вызывает такие же возражения, как и гипотеза эпициклов, поскольку она также предполагает движение вокруг воображаемой точки вне центра Земли. Центр эксцентра, на котором должно двигаться Солнце, находится вне выпуклости лунной сферы и внутри вогнутости сферы Меркурия; центры движения Марса и Юпитера находятся между сферами Меркурия и Венеры, а центр эксцентра Сатурна находится между сферами Марса и Юпитера. Он добавляет, что вращение ряда концентрических сфер вокруг общей оси вполне возможно, но не вращение вокруг разных осей, наклоненных друг к другу, поскольку сферы будут мешать друг другу, если только между ними нет других сферических тел. Таким образом, эта попытка возродить и видоизменить систему (подвижных?) эксцентров ничего не исправила [Маймонид также замечает (в той же главе), что предполагаемые наклоны Меркурия и Венеры в системе Птолемея трудно или невозможно понять или представить как реально существующие. Поэтому если Аристотель прав, то нет ни эпициклов, ни эксцентров и все вращается вокруг центра Земли].

Ибн Туфайль, второй из трех мусульманских философов Испании, визирь и врач при дворе эмира Марокко Юсуфа Ибн Абдул-Мумина, видимо, пошел по стопам своего учителя; однако его единственная сохранившаяся работа, своего рода религиозно-мистический роман об освобождении души от оков материального мира, не дает ключа к его идеям относительно системы планет. Но Ибн Рушд, который также возражает против эксцентров и эпициклов, говорит в своем комментарии к «Метафизике» Аристотеля, что у Ибн Туфайля были великолепные теории по этому вопросу; а ученик Ибн Туфайля астроном Аль-Битруджи во введении к своей теории планет говорит о нем: «Известно, что знаменитый судья Абу Бекр ибн Туфайль сказал нам, что открыл астрономическую систему и принципы различных движений, отличную от той, что установлена Птолемеем, без эксцентров и эпициклов, которая без ошибок представляет все движения планет». То есть Ибн Туфайль, вероятно, был настоящим автором довольно сложной системы, разработанной и оставленной нам его учеником в труде о планетах, который в следующем веке был переведен на иврит, а с иврита на латынь и опубликован в 1531 году [Перевод знаменитого Михаила Скотта так и не был напечатан, но рукопись сохранилась до наших дней в Париже. Принцип системы описан у Исаака Исраэли, однако он не указывает имени автора].

Цель этой системы заключалась в том, чтобы объяснить устройство Вселенной как оно есть на самом деле, а не только в том, чтобы геометрически представить движения планет, дабы иметь возможность предсказывать их положение на небе в любой момент времени; и автор (будь он Ибн Туфайль или Аль-Битруджи, он же Альпетрагий) особо подчеркивает, что не имеет намерения ни проверять ее путем сравнения с наблюдениями, ни учитывать мелких деталей этих движений. Основная идея заключается в гомоцентрических сферах, каждая звезда прикреплена к сфере, а движущей силой является девятая сфера, находящаяся за пределами сферы неподвижных звезд. Таким образом, испанскому философу следовало удовлетвориться системой Евдокса или ее модификацией, сделанной Аристотелем (которого он никогда не называет по имени, а лишь «мудрецом»), но, к сожалению, он зациклился на идее, что перводвигатель повсюду должен производить только движение с востока на запад, и поэтому ему пришлось отказаться от независимого движения планет с запада на восток и вернуться к старой идее ионийцев о семи планетах, которые просто совершают суточное вращение несколько медленнее, чем неподвижные звезды. Истинная скорость перводвигателя немного больше; восьмая сфера совершает оборот за несколько более длительный период (24 часа), и эффект перводвигателя постепенно ослабевает с увеличением расстояния, пока мы не доходим до сферы Луны, самой отдаленной от перводвигателя, которой на полный оборот требуется почти двадцать пять часов.

Это была старая, примитивная идея ионийской школы, но Аль-Битруджи (или его учитель) увидел, что этого недостаточно, так как не только полюс эклиптики отличается от полюса экватора, что не дает планетам перемещаться по замкнутым орбитам, но и, более того, планеты не находятся на одинаковом расстоянии от полюса эклиптики и у каждой свое движение по широте и переменная скорость по долготе; и все это еще нужно учесть. Девятая сфера обладает только одним движением, но восьмая – уже двумя: по долготе (прецессия) и тем, которое вызывает полюс эклиптики, описывающий небольшой круг вокруг среднего положения, тем самым создавая гипотетическое колебание или трепет равноденствий. Точно так же полюс каждой планеты описывает небольшой круг вокруг среднего положения (то есть полюса эклиптики), тем самым производя неравенства по долготе и широте движения. Всякий раз, когда фактический полюс планетной орбиты находится на параллели среднего полюса, очевидно, что планета совершает свой суточный оборот со средней скоростью, в то время как скорость увеличивается или уменьшается, когда фактический полюс находится соответственно на минимальном или максимальном расстоянии от полюса небес (движение полюса орбиты прибавляется или вычитается из движения планеты), так что эпицикл тем самым оказывается излишним. Длины радиусов этих малых кругов не приводятся, кроме как для Сатурна, для которого радиус составляет 3°3′, тогда как средний полюс Луны находится в 5° (наклон лунной орбиты) от полюса эклиптики, и малый круг настолько мал, что не производит попятного движения, что также имеет место в случае Солнца. Для периодов полюсов внешних планет приведены следующие цифры. Сатурн делает 57 оборотов за 59 лет и 1½ + ¼ дня, за этот период средний полюс отстает на 2 оборота и 1⅔° + 2/9°. Юпитер делает 65 оборотов за 71 год, средний полюс отстает на 6 оборотов. Марс делает 37 оборотов за 79 лет и 31/6 + 1/15 дня, полюс отстает на 42 оборота и 31/6°.

Другими словами, движения на этих малых кругах совершаются за синодические периоды планет. Аналогично полюс Венеры совершает 5 оборотов за 8 лет минус 2¼ дня + 1/26 отставая на 15/8 оборота в год; а Меркурий – 145 оборотов за 46 лет и 1 V 30 дня. Любопытно, что Аль-Битруджи меняет порядок планет, помещая Венеру между Марсом и Солнцем, потому что defectus (отставание) Венеры меньше, чем у Солнца. Он также говорит, что никто не привел каких-либо веских оснований для принятия привычного порядка планет и что Птолемей ошибается в том, что Меркурий и Венера никогда не выстраиваются в одну линию с Солнцем (об этом уже говорил Джабир); и так как они светятся собственным светом, то не будут выглядеть темными пятнами, проходя между Землей и Солнцем. А то, что они не получают свет от Солнца, по его мнению, доказывается тем фактом, что мы никогда не видим их серпообразными.

Нам нет нужды подробнее останавливаться на этой причудливой теории спирального движения, как ее ошибочно называли [Например, Риччоли, где скопированы кеплеровские данные о действительном движении Марса в пространстве с 1580 по 1596 год (при условии неподвижности Земли), как будто это имеет хоть какое-то отношение к «спиралям» Аль-Битруджи]. Она представляла собой громадный шаг назад, совершенно неоправданный, поскольку теория не могла всерьез претендовать на превосходство над системой Птолемея, вся сложность которой объясняется тем, что она старалась учитывать все известные подробности нерегулярного движения светил, но при этом ее можно сделать очень простой, если цель состоит лишь в представлении основных явлений. От еврейского астронома из Толедо Исаака Исраэли мы узнаем, что новая система произвела большую сенсацию, но оказалась недостаточно разработанной, чтобы ее приняли всерьез, и что она не могла заменить собой систему Птолемея, основанную на самых строгих расчетах [Он прибавляет, что у самого его недостаточно опыта, чтобы судить о предлагаемой системе].

Другой еврейский автор – Леви бен Гершом в книге, написанной в 1328 году, дал пространное опровержение гипотезы Аль-Битруджи. Однако последний, безусловно, представляет общее стремление испанских приверженцев Аристотеля преодолеть трудности физического характера в системе Птолемея; так, Ибн Рушд говорит, что астрономия Птолемея не более чем удобный метод расчета и что сам он в юности надеялся подготовить трактат по данному вопросу.

Пока на крайнем Западе предпринимались безрезультатные попытки разработать новую астрономическую теорию, астрономы Востока не оставались слепы к необходимости найти такую систему, в которой планеты без опоры в пространстве не совершали бы столь немыслимо сложных движений; и в XIII веке мы видим, что один из самых выдающихся арабских астрономов – Насир ад-Дин ат-Туси выступает в пользу системы сфер, которую считает более приемлемой, чем систему эксцентров и эпициклов. В дополнение к обзору или краткому изложению «Синтаксиса» Птолемея он написал короткую работу под названием «Памятка по астрономии», где в разных фрагментах выражает недовольство системой Птолемея. В главе о Луне он перечисляет различные аномалии, среди которых упоминает аномалию светимости, то есть пятна на Луне, которые, по его мнению, вызваны другими небесными телами, движущимися в лунном эпицикле и неодинаково освещенными светом Луны. Затем он говорит, что простая теория должна содержать центр эпицикла, описывающий за равные промежутки времени равные дуги на деференте, и диаметр эпицикла, соединяющий перицентр и апоцентр, указывая на центр деферента. Однако ни одно из этих условий не выполняется. Против теорий планет он выдвигает те же возражения, которые, надо сказать, весьма справедливы, так как введение экванта было совершенно неестественным приемом. Однако это ничто по сравнению с тем искусственным механизмом, который придумал Птолемей, чтобы учесть движения пяти планет по широте, особенно Меркурия и Венеры. Насир ад-Дин ат-Туси описывает поразительно сложные движения деферентов и эпициклов этих планет и отмечает, что они «требуют введения системы направляющих сфер, о которых древние ничего не говорят». Затем, в следующей главе, он объясняет свою собственную систему, которая позволяет отбросить эти комбинации.

Сначала он доказывает, что, если в одной плоскости расположены два круга, один касающийся другого с внутренней стороны и имеющий диаметр, равный половине диаметра второго круга, и если больший круг вращается и некая точка движется по окружности меньшего круга в противоположном направлении со скоростью вдвое больше и начиная от точки соприкосновения, тогда эта точка будет двигаться по диаметру большего круга [Ср. у Коперника, «О вращении небесных сфер», III, 4]. Итак, теперь мы можем предположить, что эти два круга являются экваторами двух сфер, а точку заменить сферой, представляющей эпицикл Луны (1 на рисунке). Насир ад-Дин далее вводит еще одну сферу (2), окружающую эпицикл и предназначенную для того, чтобы удерживать на месте диаметр от апогея до перигея, всегда совпадающий с диаметром сферы (4);
«придадим ему подходящую толщину, но не слишком большую, чтобы не занимать слишком много места».
Затем он вводит еще две сферы, одна из которых (3) соответствует меньшей сфере в приведенной выше гипотезе, и ее диаметр равен расстоянию от центра деферента до центра Земли в системе Птолемея; а другая сфера (4) имеет диаметр в два раза больше. Наконец, (4) помещается внутри несущей сферы (5), концентрической с миром и занимающей вогнутость сферы (6), экватор которой находится в плоскости орбиты Луны. (2), (4) и (5) обращаются за тот же период, за который центр эпицикла совершает оборот; (3) обращается за половину этого времени, а (6) обращается в противоположную сторону с той же скоростью, что и апогей эксцентра. Рисунок изображает, как эпицикл перемещается взад-вперед по диаметру (4) и во время обращения круга (5) описывает замкнутую кривую, о которой Насир ад-Дин справедливо говорит, что она несколько напоминает круг, но на самом деле им не является, по какой причине не может служить идеальной заменой эксцентрической окружности Птолемея. По его оценке, наибольшая разница между положениями Луны, проистекающими из этих двух теорий, составляет 1/6° градуса, посередине между сизигией и квадратурой. За исключением действия направляющей сферы (2), кривую, напоминающую круг, описывал бы не центр эпицикла, а точка соприкосновения окружностей (3) и (4). Тот же метод можно применить к Венере и трем внешним планетам, и Насир ад-Дин обещает изложить новую теорию Меркурия в приложении, но оно, видимо, утеряно.
Изображение
Жирная линия не образует круг. Все остальные фигуры – круги

Насир ад-Дин также старается улучшить предложенный Птолемеем механизм, дабы проиллюстрировать, каким образом эпицикл остается параллелен плоскости эклиптики. Он говорит, что знаменитый Ибн аль-Хайсам (впоследствии получивший признание на Западе под именем Альхазен, автор известного труда по оптике) написал об этом главу, прибавив к каждому эпициклу две сферы, чтобы учесть наклон диаметра перигея-апогея, и еще две для нижних планет для диаметра под прямым углом к нему [Ибн аль-Хайсам говорит, что доработать демонстрацию до конца можно, если использовать диски вместо сфер; но Насир ад-Дин возражает против этой системы (но без каких-либо подробностей), что несферическая система не соответствует принципам астрономии].

Насир ад-Дин использует тот же принцип, которым руководствовался в демонстрации движений по долготе, и показывает, что в этом случае с помощью двух сфер можно заставить крайние точки диаметра эпицикла двигаться взад-вперед по дуге сферы [Не вполне ясно, то ли это его собственный план, то ли тот же, что у Ибн аль-Хайсама].
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Астрономы Востока (5)

Новое сообщение ZHAN » 08 янв 2019, 09:58

Он утверждает, что эта схема лучше птолемеевской тем, что не вводит ошибок по долготе [Из-за нарушения положения диаметра от перигея до апогея, от которого отсчитывается аномалия], но признает, что он не сумел избавиться от серьезного возражения против вспомогательной окружности Птолемея, а именно что неравномерное движение по долготе относительно центра деферента требует введения соответствующей неравномерности в движение на вспомогательной окружности, так чтобы движение было равномерным по отношению к экванту. Насир ад-Дину не хватило изобретательности, чтобы найти такое расположение сфер, которое бы могло устранить такую необходимость.

Таким образом, все попытки взбунтоваться против птолемеевской системы окончились неудачей. И они не заслуживали ничего иного, поскольку невозможно было найти ничего лучшего системы Птолемея, пока не стало ясно, что Птолемей ошибался не в математических методах, которые были совершенны, а в самой фундаментальной идее неподвижно покоящейся Земли. По-видимому, еще не пришло время для радикальных перемен в этом вопросе.

Хотя арабские авторы не рассматривали учения о движении Земли, у нас есть свидетельства того, что они знали о гипотезе ее суточного вращения, что было естественным следствием их знакомства с античными мыслителями. Один из соработников Насир ад-Дина по обсерватории в Мераге Али Наджмуддин аль-Катиби, умерший в 1277 году, написал книгу по философии «Хикмет аль-айн», где выступает против этого мнения, которое приписывает «некоторым философам».

«В качестве опровержения, – говорит он, – я не утверждаю, что если бы это было так, то птица, летящая в одну сторону с движением Земли, не смогла бы ее догнать, ведь Земля двигалась бы гораздо быстрее птицы, так как за сутки она возвращается на прежнее место. Этот довод не убедителен, ибо можно было бы возразить, что атмосфере вблизи Земли сообщается ее движение, как и эфиру сообщается движение небесной сферы. Но я отвергаю эту теорию, потому что все движения на Земле совершаются по прямой линии, поэтому мы не можем согласиться с тем, что Земля движется по кругу».

[Современник Аль-Катиби Абуль-Фарадж считает необходимым доказать, что Земля не может находиться в движении, ни прямолинейном, ни круговом, но его доводы (о птицах и подброшенных вверх камнях), видимо, просто взяты у Птолемея, кн. I, гл. 6. Аль-Казвини в «Космографии» говорит, что в старину были сторонники Пифагора, утверждавшие, что Земля постоянно движется по кругу; но были ли эти сторонники греками или арабами, из контекста непонятно.]

На какую реформацию астрономии можно было надеяться, пока в ходу были подобные аргументы? Из этого замечания Аль-Катиби нам непонятно, действительно ли были какие-то арабские философы, верившие во вращение Земли. Однако в «Зоаре», великом каббалистическом труде, приписываемом Моше бен Шем Тов де Леону (умер в 1305 г.), говорится, что некий раввин Амнон Старший (иначе неизвестный) учил, будто «Земля крутится, как шар, вокруг самой себя, и есть люди с верхней стороны, а есть с нижней». Хотя этот отрывок, как и некоторые другие в «Зоаре», возможно, является гораздо более поздней вставкой, все-таки мы не очень удивились бы тому, что некоторые образованные иудеи находились под влиянием взглядов Гераклита, поскольку установлено, что доктрины каббалистов были тесно связаны с поздней греческой философией. Но так или иначе из этого единичного случая ничего не вышло, и суточное вращение небес по-прежнему везде считалось общепризнанным и самоочевидным фактом.

Таким образом, арабские астрономы, которые действительно хотели детально проследить движения небесных тел, должны были принимать систему Птолемея в целом. Уже давно была осознана необходимость в новых планетных таблицах, и этот важный труд наконец предприняли король Кастилии Альфонсо X и несколько еврейских и христианских астрономов, работавших при его правлении в Толедо, которые и подготовили знаменитые «Альфонсовы таблицы». По всей видимости, у короля были некоторые сомнения по поводу истинности системы с точки зрения физики, судя по его знаменитому высказыванию о том, что, если бы во время сотворения мира Бог посоветовался с ним, он дал бы ему хороший совет. Таблицы были подготовлены под руководством еврея Исхака бен Саида, называемого Хасаном, и врача Йегуды бен Моше Коэна и закончены в 1252 году, когда Альфонсо взошел на трон Кастилии. Они пользовались прекрасной репутацией на протяжении трехсот лет как превосходнейшие планетные таблицы; впервые их напечатали в 1483 году, но еще задолго до того они распространились по всей Европе в многочисленных рукописных копиях, многие из которых сохранились до наших дней.

В пятитомном мадридском издании 1863—1867 годов Libros del Saber de Astronomia del Rey D. Alfonso X. de Castella, «Книги астрономических знаний короля Кастилии Альфонсо X», подсчитано двадцать шесть кодексов. Этот сборник, включающий в себя ряд глав о сферической и теоретической астрономии с последующими таблицами, видимо, составлен из нескольких рукописей, поскольку там много раз повторяются даже самые элементарные вопросы. В третьем томе рассматриваются теории планет, но тщетно было бы искать там какие-либо усовершенствования птолемеевской системы; напротив, он как нельзя лучше иллюстрирует плачевное состояние астрономии в Средние века. В основном элементы орбит повторяют птолемеевские, порой приводятся только приблизительные данные, а между разными главами есть расхождения в некоторых величинах. Хотя Птолемей помещает центр деферента на полпути между центром экванта и Землей, Libros del Saber помещают центр экванта (cerco del alaux [Al – это арабский артикль, aux (апсида) – искаженное арабское oudj. Эквант также называется cérco del yguador.]) на полпути между Землей и центром деферента (cerco del levador), как в птолемеевской теории Меркурия, которую авторы, видимо, распространяют и на другие планеты, опуская движение центра деферента по небольшой окружности; но тем не менее они верно приводят его для Меркурия [Указывается радиус малого круга – 1/21, как в «Гипотезах» Птолемея]. Там мы видим весьма любопытный рисунок деферента Меркурия в виде эллипса (его оси относятся друг к другу примерно как 6 к 5), причем в центре находится нечто похожее на Солнце. Эта кривая построена из ряда небольших дуг, и, очевидно, это не что иное, как кривая, описываемая центром эпицикла Меркурия в теории Птолемея. Ибо, согласно этой теории, центр деферента описывает окружность небольшого круга с радиусом равным 1/21 радиуса деферента в направлении с востока на запад, в то же время когда центр эпицикла обходит по окружности деферента с запада на восток. Это заставляет центр эпицикла описывать замкнутую кривую, напоминающую эллипс, оси которого находятся в отношении 11:10, почти как на испанском чертеже, и, следовательно, последний отнюдь не является каким-то открытием, предвосхитившим великое открытие Кеплера, так как в случае нижних планет реальной орбитой является эпицикл [Редактор издания дон Мануэль Рико-и-Синобас на с. xxxiii своего предисловия доходит даже до того, что предполагает, будто бы Кеплер мог знать об этом великом открытии Альфонсо или, скорее, Аз-Заркали, так как в тексте эта схема приписывается ему. Эта и другие подобные схемы предназначались для использования вместо планетных таблиц, как это позднее сделал Апиан]. Маленький похожий на Солнце объект в центре эллипса представляет центр малого круга у Птолемея, и он либо был вставлен в рукопись через несколько веков после ее написания, либо, что вернее, это всего лишь небольшое расплывшееся пятнышко туши на пергаменте в том месте, где неподвижная ножка циркуля оставила дырочку. Овальный деферент Меркурия встречается в нескольких книгах, опубликованных в XVI и XVII веках [Некоторые авторы (которые приводят чертеж) также учитывают равномерное угловое движение вокруг центра экванта, который лежит на точке окружности малого круга, ближайшего к Земле. Кривая, описываемая центром эпицикла, таким образом приобретает форму яйца, а не эллипса].
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Астрономы Востока (6)

Новое сообщение ZHAN » 09 янв 2019, 10:32

Если бы этот несколько запутанный сборник эссе под названием Libros del Saber опубликовали в XIII веке, он бы не продвинул вперед астрономическую науку, но тем не менее нельзя отрицать, что «Альфонсовы таблицы» в свое время принесли большую пользу. Правда, в них не приводятся фактические элементы и ничего не говорится о каких-либо наблюдениях, с помощью которых были установлены несколько более правильных значений средних движений [Таблицы в IV томе Libros del Saber довольно сильно отличаются от «Альфонсовых таблиц» и, по-видимому, предназначались только для занятий астрологией].

Закончив наш обзор планетных теорий арабов, мы должны добавить еще несколько слов об их идеях о природе и движении сферы неподвижных звезд. Преувеличенные понятия, бытовавшие до изобретения телескопа, о видимых угловых диаметрах звезд, естественно, привели к ошибочным оценкам их фактического размера, основанным на предположении, что сфера неподвижных звезд (восьмая) находится непосредственно за сферой Сатурна [Аль-Баттани указывает наибольшее расстояние до Сатурна как 18 094, а до неподвижных звезд – как 19 000 земных полудиаметров. У Аль-Фергани они совершенно равны. Аль-Кушчи указывает полудиаметры вогнутости звездной сферы в парасангах – 33 509 180, девятой сферы – 33 524 309, а полудиаметры выпуклости «не знает никто, кроме Бога»].

Предполагалось, что звезды первой величины имеют видимый диаметр, равный 1/20 видимого диаметра Солнца, из чего следовало, что их фактические диаметры примерно в 4¼ раза больше, чем у Земли, или приблизительно равны диаметрам Юпитера и Сатурна; тогда как диаметры звезд шестой величины примерно в 2½ раза больше, чем у Земли, или примерно вдвое больше, чем у Марса [Аль-Фергани указывает объем шести классов как 107, 90, 72, 54, 36, 18 объемов Земли. Абуль-Фарадж приводит аналогичный ряд цифр от 93 до 15¼ для средней звезды каждого класса. Шамсуддин ад-Димашки в своей «Космографии» просто говорит, что самая маленькая неподвижная звезда намного больше Земли].

Что касается природы звезд, то, похоже, они в основном считались самосветящимися сгущенными частями сферы, хотя Авраам бар-Хия говорит, что восьмая сфера светится не равномерным светом, а имеет более плотные пятна, которые освещаются Солнцем и кажутся нам неподвижными звездами [Некий автор по имени Ибн Зура написал трактат «Почему светятся звезды, хотя и они, и сферы состоят из одного вещества»].

Чтобы объяснить видимое медленное смещение звезд, параллельное эклиптике, с запада на восток, в результате чего растет их долгота, а широта остается неизменной, возникла необходимость ввести девятую сферу (перводвигатель), которая поворачивается за двадцать четыре часа и сообщает это движение восьмой сфере, в то время как восьмая крайне медленно вращается вокруг своей оси, образующей угол 23°35′ с осью девятой [Философ Ибн Сина (Авиценна) определяет самую внешнюю сферу как шарообразное, сплошное (не составное) тело, исходящее непосредственно от Бога и не растворяющееся, наделенное от рождения круговым движением, выражающим его хвалу Творцу].

Однако многие арабские астрономы усложняли простой феномен прецессии тем, что полагали его переменным. Выше мы уже упоминали, что, как говорят Теон и Прокл, некоторые астрономы до Птолемея, по-видимому, считали, что прецессионное смещение звезд не является поступательным, но ограничивается колебаниями по дуге 8°, по которой перемещаются точки равноденствия взад-вперед по эклиптике, всегда с одной и той же скоростью 1° за 80 лет. По-видимому, абсурдность внезапного изменения направления стала очевидной, как только арабы начали развивать астрономию, ибо мы находим, что один из самых ранних астрономов – Сабит Ибн Курра заменил ее теорией, которая с точки зрения физики вызывает меньше возражений [Трактат «О движении восьмой сферы» так и не был напечатан].

Он представил себе неподвижную эклиптику (в девятой сфере), которая пересекает экватор в двух точках (средние равноденствия) под углом 23°33′30″, и подвижную эклиптику (в восьмой сфере), зафиксированную на двух диаметрально противоположных точках на окружностях двух малых кругов, центры которых находятся в средних равноденствиях и радиусы равны 4°1843″. Подвижные точки тропиков Рака и Козерога никогда не покидают фиксированной эклиптики, но движутся взад-вперед в пределах 8°37′26″, тогда как две точки на подвижной эклиптике в 90° от точек тропиков движутся по окружностям малых кругов, так что подвижная эклиптика поднимается и опускается на неподвижной, в то время как точки пересечения экватора и подвижной эклиптики приближаются и удаляются в пределах 10°45′ в обе стороны.

Это движение восьмой сферы, общее для всех звезд, и, следовательно, Солнце иногда будет достигать максимального склонения в Раке, а иногда в Близнецах. Сабит не говорит, что наклонение эклиптики является переменной величиной, и, возможно, ему не приходило в голову, что это неизбежно следовало из его теории; он лишь замечает перемену направления и количества движения равноденствий, которое, по его словам, возросло со времен Птолемея, когда оно составляло всего 1° за 100 лет, в то время как последующие наблюдатели нашли его равным 1° за 66 лет. Таким образом, ошибочное значение у Птолемея в основном и было причиной долгожительства воображаемой теории. Следует отметить, что Сабит выражается довольно сдержанно и, кажется, считает, что нужны дальнейшие наблюдения, чтобы решить, верна теория или нет.

Его младший современник Аль-Баттани еще более осторожен; хотя он и повторяет рассказ о «трепете равноденствий» из Теона (о котором говорит, что Птолемей «в своей книге ясно сказал»), но не использует его, а просто принимает значение 1° за 66 лет (или 54,5″ в год), которое находит путем сравнения собственных наблюдений и некоторых сделанных Менелаем. В отказе от ошибочного значения у Птолемея, которое принимал только Аль-Фергани, за Аль-Баттани последовал Ибн Юнус, который подошел еще ближе к истине, приняв значение 1° за 70 лет, или 51,2″ в год, и который не говорит о трепете.

Это в значительной степени заслуга ряда других арабских авторов, что они не позволили сбить себя с толку этим воображаемым явлением; среди них Ас-Суфи, автор единственной уранометрии Средних веков, который следовал за Аль-Баттани, а также Абуль-Фарадж и Аль-Джагмини [Абуль-Фарадж просто говорит, что, согласно Птолемею, движение составляет 1° за 100 лет, или, согласно другим источникам, 1° за 66 лет. Но на другой странице он говорит, что, если древние халдеи придавали точкам тропиков движение взад-вперед и если древние астрологи принимали его, то движение неподвижных звезд, видимо, было им неизвестно. Аль-Джагмини говорит, что большинство людей признают величину 1° за 66 солнечных лет], тогда как Насир ад-Дин упоминает о трепете, но, кажется, сомневается в его реальности. Другие охотно принимали его на веру, например Аз-Заркали, у которого период колебаний 10° в любую сторону равен 2000 мусульманским годам (или 1940 григорианским годам, то есть 1° за 97 лет, или 37″ в год). Движение совершается в круге радиусом 10°, в хиджру подвижное равноденствие находилось в 40′ увеличивавшейся прецессии, а в 1080 году – в 7°25′ [Авраам бар-Хия указывает период 1600 лет, не приводя источника. Он прибавляет, что древние индийцы, египтяне, халдеи, греки и римляне первыми предложили эту теорию; Птолемей не защищал ее и не отвергал, но Аль-Баттани доказал ее ошибочность].

Уменьшение наклона эклиптики, которое обнаружили астрономы Аль-Мамуна, равное 23°33′, безусловно добавило достоверности идее трепета, и следующим шагом в развитии этой любопытной теории стало сочетание поступательного и колебательного движения. Аль-Битруджи, излагающий своего рода историю теории начиная с мифического Гермеса, утверждает, что Теон (или Таун Александрийский, как он его называет) соединил движение на 1° за 100 лет с колебанием [По его словам, Аз-Заркали сделал то же самое].

Век спустя это было сделано в действительности, и последний шаг в развитии теории сделал король Альфонсо или его астрономы, которые считали, что равноденствие отступило гораздо дальше, чем позволяла теория Сабита. Было предположено, что равноденствия обходят небеса за 49 000 лет (годовое движение равно 26,45″), в то время как период неравенства трепета составляет 7000 лет, так что в некий Большой юбилейный год все снова станет таким, каким было вначале [Более поздний автор Августин Риций, «О движении восьми сфер», который прослеживает теорию до Гермеса за 1985 лет до Птолемея (!), приписывает этот шаг толедскому еврею Исааку Хасану, прибавляя, что через четыре года после составления таблиц Альфонсо убедился в тщетности теории, прочтя книгу Ас-Суфи о неподвижных звездах].

Поступательное движение принадлежит девятой сфере, годовая прецессия колеблется в пределах 26,45″ ± 28,96″, или от +55,41″ до —2″51 [В «Альфонсовых таблицах» максимум приходился на время рождения Христа. Рейнгольд в комментарии к Пурбаху объсняет, что 25,45″ – это расстояние, которое проходит Солнце за 10″44′ секунды, в соответствии с чем тропический год в «Альфонсовых таблицах» составлял меньше 365¼ дней].

Тогда встала необходимость предположить существование десятой сферы, которая как перводвигатель сообщала бы суточное вращение всем остальным, в то время как девятая производила бы поступательное, а восьмая – периодическое движение на малых кругах, находящихся «в вогнутости девятой сферы». Это была легкая и приятная теория благодаря продолжительным периодам и медленным изменениям, которые она производила в величине годовой прецессии; и, не обращая внимания на то, что теория не имеет под собой никаких оснований, кроме того факта, что наклон эклиптики теперь был примерно на 20′ меньше, чем заявлено у Птолемея, и что он указал величину прецессии 36″ в год, а не около 50″, и часто закрывая глаза на некоторые необходимые следствия из этого, как, например, изменение широты звезд [Авраам бар-Хия говорит, что трепет не изменяет широты. Вероятно, он имеет в виду самую раннюю форму теории – которая описана у Теона], астрономы продолжали принимать эту теорию, пока наконец человек, реально наблюдавший звезды, не встал и не разделался с ней, показав, что наклон эклиптики неуклонно уменьшался и что величина годовой прецессии никогда не изменялась.

Мы говорим об этом сейчас только потому, что это потребовало перестановки сфер, и потому, что это было в высшей степени характерно для эпохи, когда не велось никаких постоянных наблюдений и практически не предпринималось попыток улучшить теории Птолемея. Теория трепета – trepidatio или titubatio, как ее иногда называют, была такой единственной попыткой, и лучше было ее вообще не совершать. Однако она стала небезынтересной главой в истории астрономии.

Здесь мы завершаем наш обзор восточной астрономии. Мы опустили несколько ценных вкладов арабских ученых в науку, так как они не связаны с космологией или теорией планет и потому не относятся к рассматриваемым вопросам. Но даже с учетом такого ограничения мы достаточно показали, что, когда европейцы вновь занялись наукой, они нашли астрономию практически в том же состоянии, в котором ее оставил Птолемей во II веке. Однако арабы вложили в их руки мощный инструмент тем, что заменили исчисление хорд у Птолемея на исчисление синусов и тригонометрию и тем самым сыграли чрезвычайно важную роль в дальнейшем развитии астрономии.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Возрождение астрономии в Европе

Новое сообщение ZHAN » 11 янв 2019, 20:54

Схоластика достигла своего зенита примерно в конце XIII века. Она немало сделала для просвещения человечества, познакомив западные страны с трудами Аристотеля. Но никакие даже самые глубокие исследования Аристотеля или схоластов сами по себе не могли продвинуть науку вперед. Требовались новые свершения, но их пришлось бы начинать с самого начала, заложенного математиками Античности, и для прогресса астрономии в первую очередь нужно было тщательно изучить астрономические открытия александрийской школы, изложенные в «Синтаксисе» Птолемея.

Желание заполучить этот труд из первых рук, не полагаясь на арабские пересказы в переводе на латынь, было лишь одним из этапов общего стремления ослабить благодаря более глубокому знанию греческой литературы те узы, которые сковывали человеческую мысль, и научиться видеть мир как он есть, а не как его представляли себе богословы, полагавшие, что он должен быть устроен так, а не иначе.

Хотя греческий язык в основном неизвестен в средневековой Европе, его все же немного изучали в ирландских монастырях, а также некоторых других местах, и время от времени можно было встретить образованного человека, сведущего в греческом, как, например, Роджер Бэкон, Ричард Гроссетест, епископ Линкольнский, и фламандский доминиканец Вильем из Мербеке, который перевел труды Архимеда, Симпликия и других. Но лишь в XIV веке желание знать греческий язык стало распространенным. Петрарка пытался выучить его, Боккаччо усердно изучал его, и вскоре выходцы из Греции стали приезжать в Италию в качестве учителей.

Мануил Хрисолор читал лекции во Флоренции в 1397—1400 годах, и за ним пришли другие, кто привозил с собой греческие рукописи и переводил их, так что еще до захвата Константинополя турками в 1453 году греческий язык и литература стали хорошо известны в Италии [В Византийской империи астрономия практически не развивалась. Сохранилось несколько кодексов, где содержатся заметки по астрономии сфер, астрологии и хронологии, и, по-видимому, в Константинополе все же были известны главные арабские труды, однако изучение византийской астрономии дает очень скудные результаты. У них не было даже комментариев на Птолемея].

Рукописи с рвением искали и собирали в больших библиотеках, таких как библиотека Ватикана в Риме, Медичи во Флоренции и кардинала Виссариона в Венеции.

Ветер с берегов Эллады внес свежую струю в спертый воздух схоластики. Ее преемником стал гуманизм, который принимал этот мир как справедливое и прекрасное место, данное человеку, чтобы наслаждаться и пользоваться им себе во благо. В Италии реакция оказалась настолько острой, что казалось, в нее снова вернется язычество на смену христианству; и хотя Италия произвела на свет памятники искусства и поэзии, оставшиеся в веках, ей недоставало той серьезности, которая в Германии привела к возрождению науки, а затем и к бунту против духовной тирании.

Германия уже во второй половине XIV века начала подготовку к этой работе, основывая один университет за другим, в то время как Париж постепенно утрачивал славу, которой пользовался так долго, славу величайшего учебного заведения, и страдал от бедствий Столетней войны между Францией и Англией. Из этого возрождения образования наибольшую выгоду для себя извлекла астрономия, и примерно в середине XV века поднялся первый из длинного ряда немецких астрономов, которые проложили путь для Коперника и Кеплера, хотя ни один из них не заслужил права быть названным предшественником этих героев.
Изображение

Николай Кузанский родился в 1401 году в Кусе, деревне на берегу Мозеля, в семье Иоганна Хрипфса (или Кребса), лодочника и виноградаря. Отец, вероятно зажиточный человек, плохо с ним обращался, и он сбежал из дома и поступил на службу к дворянину, который отправил его получать образование в школе Братства общей жизни в Девентере, где он пропитался мистическим богословием этого религиозного сообщества. Затем он учился в Гейдельберге, Болонье и Падуе, а с науками математикой и астрономией познакомился у знаменитого географа Паоло Тосканелли, который в последние годы своей долгой жизни якобы подсказал Колумбу искать западный путь в Индию.

Кузанский сыграл немаловажную роль на Базельском соборе, где сначала был сторонником власти собора, но позже перешел на другую сторону и стал твердым приверженцем папы, прилагая все усилия, чтобы восстановить и увеличить его могущество. Его друг Пий II сделал его кардиналом и князь-епископом Бриксена в Тироле, где Кузанский вел довольно бурную жизнь по причине множества конфликтов, вызванных его желанием реформировать тамошние религиозные порядки. Он умер в 1464 году, завещав основанной им в родном городе больнице библиотеку, которую собрал во время многочисленных путешествий по Германии и Италии, и значительная ее часть до сих пор хранится там.

Здесь мы вынуждены оставить без внимания его тщетную попытку убедить Базельский собор провести реформу календаря, а также и его математические труды, поскольку мы вынуждены ограничиться только его рассуждениями о положении и движении Земли. Эти взгляды Кузанского тесно связаны с его философской системой, смесью неоплатонической и христианской мистики, которую он изложил в трактате De docta ignorantia, или «Об ученом незнании», то есть о неспособности человеческого разума постигнуть абсолютное, которое для него то же самое, что и математическая бесконечность. Так он оказывается противоречащим сам себе, когда рассматривает свойства математических фигур и позволяет им быть бесконечно большими; он доказывает, что, когда линия бесконечна, она одновременно является прямой линией, треугольником, кругом и шаром.

Эти противоречия приобретают теологическую важность, поскольку бесконечно большой треугольник является символом Божественной Троицы; однако еще большее значение для его взглядов на роль Земли имеет то, что таким образом он приходит к представлению о бесконечной протяженности Вселенной и, следовательно, отсутствии у нее центра и окружности.

То есть Земля не может находиться в центре мира, и так как он предполагает, что движение естественным образом присуще всем телам, то и Земля не может быть лишена всякого движения. Это всего лишь иллюзия – думать, будто мы находимся в центре мира, ведь если бы один человек стоял на Северном полюсе Земли, а другой – на Северном полюсе небесной сферы, то небесный полюс первому представлялся бы находящимся в зените, в то время как для второго это место занимал бы земной, и, вследствие этого, оба считали бы, что находятся в центре. Таким образом мы постигаем своим разумом (для которого только docta ignorantia имеет значение), что не можем представить себе мир, его движение и форму, ибо он выглядит как колесо в колесе, сфера в сфере, где нет ни центра, ни окружности.

До таких понятий (говорит Кузанский в начале двенадцатой главы) древние не поднимались, потому что им не хватало ученого знания. Но для нас очевидно, что Земля на самом деле движется, хотя мы этого не видим, ведь мы воспринимаем движение только в сравнении с неподвижными вещами; к примеру, как моряк посреди моря мог бы узнать, что его корабль плывет? И значит, стоим ли мы на Земле, или на Солнце, или на любой другой звезде, нам кажется, что мы находимся в неподвижном центре, а все остальное движется. Одно движение более круглое и совершенное, чем другое, подобным же образом различны и формы (тел), форма же Земли благородная и шарообразная, но может быть и более совершенной.

Все это чистой воды умозрительные спекуляции, ни в коей мере не основанные на наблюдениях, нет в них и никаких явных ссылок на наблюдения или их результаты, кроме самых расплывчатых, когда, например, Кузанский говорит, что Солнце больше Земли, а Земля больше Луны.

Тем не менее он очень здраво рассуждает о природе небесных тел. Земля, Солнце и другие звезды содержат одни и те же элементы и различаются только по тому, как элементы смешаны и какой из них перевешивает остальные; каждое небесное тело излучает собственный свет и тепло и свое особое влияние, отличное от других. В своих обобщениях он даже заходит до предположения, что, если бы человек стоял на Солнце, он нашел бы его не таким ярким, каким мы видим его, поскольку Солнце представляет собой, так сказать, нечто вроде Земли в центре (quasi terram centraliorem) и пламенную окружность, в то время как между ними находятся своего рода водяные облака и более чистый воздух, так что Солнце только с внешней стороны кажется очень ярким и горячим. Неожиданное предвосхищение теории Вильсона о составе Солнца, высказанной более чем через триста лет после эпохи Николая Кузанского. Но как нам относиться к его утверждению, что Земля движется? Неужели он тогда же предвосхитил и открытие Коперника? То, что Кузанский не мыслил себе какого-либо поступательного движения, следует из другого отрывка, где он (по-видимому, забыв, что Вселенная не имеет центра) говорит, что
«Бог дал всякому телу его природу, орбиту и место; Он поместил Землю в середине и постановил, что она должна быть тяжелой и двигаться в центре мира (ad centrum mundi moveri), дабы она всегда оставалась в центре и не отклонялась ни вверх, ни в сторону».
Следовательно, он, может быть, представлял себе только вращение, но поскольку он полагал, что все находится в движении, то не мог всего лишь предполагать, что видимое вращение небес вызвано вращением Земли за двадцать четыре часа. Однако из опубликованных работ Кузанского больше нельзя выяснить ничего, и потому нам очень повезло, что в его библиотеке в Кусе найдена заметка, сделанная его рукой, в которой он четко излагает свои мысли. Она написана на последней странице астрономического трактата, изданного в Нюрнберге в 1444 году, а значит, позже книги «Об ученом незнании», которая была закончена в 1440 году, и Кузанский просто подробно изложил идеи, смутно очерченные в этой книге.

В этой заметке Кузанский для начала отмечает, что никакое движение не может быть идеально круговым, поэтому никакая звезда не описывает точный круг между двумя восходами и никакая неподвижная точка на восьмой сфере не является постоянным полюсом. Земля не может покоиться, она движется, подобно другим звездам, и, следовательно, она совершает один оборот вокруг полюсов мира за день и ночь, «как говорит Пифагор», восьмая сфера – два, а Солнце – чуть меньше двух за день и ночь, то есть, по-видимому, на 1/364 часть окружности.

Иными словами, звездная сфера совершает оборот с востока на запад за двенадцать часов, и Земля совершает оборот в том же направлении за двадцать четыре часа, что для наблюдателя на Земле производит то же впечатление, как если бы Земля была неподвижна, в то время как звездная сфера совершала бы один оборот за двадцать четыре часа. Чтобы объяснить годовое движение Солнца, Кузанский (подобно ионийцам) допускает отставание Солнца в ежедневном обращении; но, определяя величину этого отставания, он допускает небольшую ошибку: он упускает разницу между сидерическим и солнечным временем, так как звездная сфера обращается вокруг Земли 366 раз за год, а Солнце обращается 365 раз, то есть отставание должно было составлять 1/365 часть.

Более того, мы должны представить себе другие полюса, расположенные на экваторе, вокруг которых обращается Земля за сутки, а также восьмая сфера за несколько более короткое время, тогда как тело Солнца находится примерно в 23° от одного из этих полюсов; и обращение мира также увлекает с собой сферу Солнца менее чем на 1/364 часть ее окружности один раз за сутки, «и из этого запаздывания возникает зодиак». Движение восьмой сферы вокруг второй пары полюсов настолько медленнее, чем у Земли, что за сто лет точка отстает на столько, на сколько Солнце отстает за день.

Это второе обращение вокруг оси, расположенной на экваторе, по мысли Кузанского, должно объяснять две вещи.

Без этого обращения солнечной сферы Солнце совершало бы свое годовое движение по экватору или параллельно ему, а поскольку второе обращение солнечной сферы немного медленнее, чем соответствующее обращение Земли, то нам представляется, что Солнце в течение года не только движется вокруг небес, но и смещается на 23½° к северу и на то же расстояние к югу от экватора. Совершенно ясно, что именно это имеет в виду Кузанский, хотя и выражается не очень отчетливо. Звездная сфера во время этого второго обращения также немного отстает, но лишь на 1° за сто лет. Очевидно, что Кузанский полагает, будто это объясняет изменение расположения звезд из-за прецессии, но вряд ли нужно говорить, что никакое вращение вокруг оси, расположенной на небесном экваторе, не может представить явление прецессии, а именно постоянное увеличение долготы звезды, притом что широта остается неизменной. Вероятно, он находился под влиянием отголосков Евдокса, когда записывал эту часть теории, а вращение восьмой сферы вокруг оси, лежащей в плоскости экватора, возможно, должно было представлять не саму прецессию, а ее предполагаемое неравенство или трепет, хотя в таком случае ось должна помещаться в зодиаке, а не на экваторе.

Кто-то удачно сказал, что добрые люди, роясь в бумагах покойника и публикуя их по своему усмотрению, только заставляют нас еще больше бояться смерти.

Поскольку эта заметка Кузанского не может выражать его окончательное мнение во всех деталях, а, скорее всего, является лишь очень грубым и неполным наброском того, что он собирался впоследствии разработать более тщательно, нам не следует винить его за недостатки теории применительно к прецессии. Но так как в своем опубликованном трактате он выразился очень неопределенно, мы, безусловно, имеем основания прибегнуть к свидетельству данной заметки, чтобы показать, что его взгляды не содержат никакого открытия, и тем более, говоря о движении Земли, ему и не снилось приписывать ей поступательное движение в пространстве, будь то вокруг Солнца или вокруг любого иного небесного тела. Он руководствовался исключительно своим заранее составленным мнением о том, что движение естественно для всех тел, и в том, что Кузанский устраивает дела Вселенной исходя из внутренней убежденности, он напоминает нам ранних греческих философов, которые поступали так же снова и снова, не слишком обременяя себя огромным запасом наблюдаемых фактов. И все же он не боялся свободно рассуждать об устройстве мира, не будучи рабом ни теологии, ни Аристотеля, но, вероятно, даже не считал свои идеи созревшими для публикации и потому в своих книгах ограничивался лишь общими фразами.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Возрождение астрономии в Европе (2)

Новое сообщение ZHAN » 12 янв 2019, 16:51

Общее возрождение образования в XV веке вскоре ясно показало всем интересующимся астрономией, что для дальнейшего строительства на фундаменте, заложенном александрийскими астрономами, прежде всего необходимо как следует разобраться в этом фундаменте путем изучения великого труда Птолемея.

Пока Кузанский писал об ученом незнании, в Германии рос некий юноша, страстно желавший приобрести ученое знание. Георг фон Пойербах или Пурбах родился в 1423 году и взял себе имя по месту рождения – в маленьком городке на австро-баварской границе. Еще не достигнув возраста двадцати лет, он прошел обучение в Венском университете и некоторое время провел в Италии, где, помимо прочего, познакомился с престарелым Джованни Бьянкини, автором переработанного издания «Альфонсовых таблиц».

Назначенный на профессорскую должность в Вене вскоре после возвращения на родину, он с рвением погрузился в изучение Птолемея и, распознав преимущество применения синусов вместо хорд (как это сделали арабы), вычислил таблицу синусов для каждых 10′. Чтобы облегчить задачу по изучению планетной теории Птолемея, он написал прекрасный учебник Theoricae novae planetarum, «Новая теория планет», который в течение следующих ста лет часто печатали и комментировали различные издатели. В нем нет новых разработок теории, она лишь четко и лаконично описывает систему Птолемея; но Пурбах перенял у арабов их твердые хрустальные сферы, предусмотрев между ними достаточное пространство, чтобы свободно оперировать эксцентрическими орбитами и эпициклами всех планет.

Он, однако, страстно желал более точно ознакомиться с текстом птолемеевского «Синтаксиса», чем это было возможно на тот момент – книга была доступна лишь из вторых рук через перевод на арабский язык, – ведь только таким способом он мог надеяться усовершенствовать «Альфонсовы таблицы», в которых даже самые грубые наблюдения выявляли вопиющие ошибки. Чтобы заполучить в свои руки греческие рукописи Птолемея и других математиков Античности, нужно было ехать в Италию, и потому для Пурбаха стало особым везением, что он свел знакомство с кардиналом Виссарионом, греком по происхождению, который в равной степени стремился познакомить Запад с греческой литературой. Пурбах умер (в 1461 г.), прежде чем смог отправиться в Италию, но его место друга кардинала сразу же занял его уважаемый ученик Региомонтан, который уже несколько лет трудился сообща со своим учителем и уже приступил к изучению греческого языка.

Родившемуся в 1436 году сыном мельника во франконской деревне Кенигсберге Иоганну Мюллеру, более известному как Иоганн де Монте Регио или (уже после смерти) как Региомонтан, было двадцать шесть лет, когда он отправился в Италию с Виссарионом в 1462 году. В течение шести лет он посетил главные итальянские города, не упуская при этом возможности приобретать греческие рукописи. Через несколько лет после возвращения домой он поселился в Нюрнберге, где построил обсерваторию и начал широкую публикацию научных трудов.

Среди изданных в Нюрнберге книг ни одна не произвела большей сенсации, чем астрономические эфемериды Региомонтана, которые некоторое время спустя сослужили неоценимую службу бесстрашным португальским и испанским мореплавателям. Еще более важным оказался его трактат по тригонометрии, первый систематический труд по этому вопросу, и его Tabulae directionum, которые включили в себя таблицу синусов с шагом в одну минуту и таблицу тангенсов с шагом в один градус. Хотя эти работы, позволившие ему занять высокое место математиков, не были напечатаны при его жизни [Утверждалось, что таблицы были отпечатаны в Нюрнберге в 1475 году, но это весьма сомнительно. Они были напечатаны в Аугсбурге в 1490 году, а книга «О треугольниках» – не раньше 1533 (Нюрнберг)], Региомонтан прославился по всей Европе, вероятно, благодаря своим эфемеридам, и в 1475 году папа вызвал его в Рим, чтобы осуществить давно предлагавшуюся реформу календаря. Но Региомонтан скончался в Риме уже в следующем году, и таким образом человечество потеряло шанс на осуществление этой реформы еще в то время, пока весь христианский мир еще признавал главенство папы римского.

Региомонтан проделал немалую и ценную работу, однако никак не продвинул вперед теорию планет. Он закончил начатый Пурбахом учебник «Краткое изложение «Альмагеста» Птолемея» (впервые напечатанный в Венеции в 1496 году), где во всех подробностях принимает систему античного ученого. И все же некоторые знаменитые авторы ставят ему в заслугу важнейшее открытие – открытие суточного вращения Земли и провозглашают предтечей Коперника [Некоторые из них даже говорят, что Региомонтан учил обращению Земли вокруг Солнца!].

В 1533 году Иоганн Шенер опубликовал в Нюрнберге мемуары под названием Opusculum geographicum, «Сочинение по географии», вторая глава которой озаглавлена An terra moveatur an quiescat, Joannis de Monte Regio disputatio, «Движется ли Земля или покоится, доводы Иоанна де Монте Регио»; и, похоже, те авторы, которые положили эту главу в основу своих заявлений о Региомонтане как о предшественнике Коперника, либо не читали ее вообще, либо ограничились прочтением заголовка и нескольких первых строк. Ибо в этой главе нет ни слова в пользу какого-либо движения Земли.

Во-первых, ее автор насмехается над «некоторыми из древних», которые учили вращению Земли и воображали себе ее в виде мяса на вертеле, а Солнце в виде костра и говорили, что не огонь нуждается в мясе, а наоборот и что так же не Солнце нуждается в Земле, а Земля нуждается в Солнце. После этой попытки остроумно пошутить выкладываются набившие оскомину доводы против вращения: птицы и облака оставались бы далеко позади, рушились бы здания и тому подобное. Прямо скажем, это слова не предтечи Коперника. А если кто-нибудь возразит, что это, возможно, были доводы Шенера, а не Региомонтана, то пусть он прочтет «Краткое изложение «Альмагеста», где собраны древние доводы Птолемея, так что нет никаких сомнений в том, что Региомонтан отвергал какое-либо вращение Земли. Кроме того, «Краткое изложение» однозначно подтверждает, что Земля находится в центре мира. Доппельмайер, который первым распространил этот миф, добавляет, что Иоганн Преториус в рукописи, найденной после его смерти, утверждал, будто у Георга Гартмана, математика из Нюрнберга (1489—1564), была записка, сделанная рукой Региомонтана, в которой он делает вывод:
«Поэтому с необходимостью следует, что движение звезд должно быть немного изменено (paululum variari) по причине движения Земли».
Но как можно основывать какие-то серьезные заявления о Региомонтане на столь расплывчатых данных, когда они явно противоречат опубликованным трудам великого астронома? И какое движение Земли мог он иметь в виду, которое лишь «немного» влияет на движение звезд?

То, что Региомонтан счел необходимым собрать в «Кратком изложении» доводы против всякого движения Земли, ни в коей мере не доказывает, что подобная доктрина бытовала в его дни, поскольку в этом он лишь следовал примеру Птолемея. Тем не менее он должен был знать о мистических рассуждениях Кузанского и, возможно, решил, что было бы полезно подчеркнуть аргументы Птолемея; и он, несомненно, был бы очень удивлен, если бы ему сказали, что через несколько столетий после смерти его стали считать сторонником диаметрально противоположного мнения.

И все же он не единственный великий человек, которого объявляли предшественником Коперника. Той же чести удостоился Леонардо да Винчи, который действительно обладал настолько универсальным гением, что в его случае это заблуждение может быть простительно. Либри говорит о нем:
«В астрономии он до Коперника обосновал теорию движения Земли».
В рукописи, написанной около 1510 года, Леонардо показал, что тело, описывая вид спирали, может двигаться в направлении вращающегося шара, подобного земному, так что его видимое движение относительно точки на поверхности может представлять собой прямую линию, проходящую через центр. Но предложить задачу такого рода – это совсем не то же, что утверждать, что Земля в самом деле является вращающимся шаром. С таким же успехом можно было бы обвинить его в том, что он думал, будто бы падающие тела описывают спирали. Из этой заметки (одной из тысяч математических задач и заметок в его тетрадях) мы можем извлечь лишь то, что у него было очень четкое представление о параллелограмме движений.

В то время жил только один человек, о котором мы знаем наверняка, что он постулировал суточное вращение Земли еще до того, как была опубликована книга Коперника. Челио Кальканьини (1479—1541) был родом из Феррары и в юности служил в армии императора и папы Юлия II; затем он стал священником и профессором в Феррарском университете, но много путешествовал по Германии, Польше и Венгрии с различными дипломатическими миссиями.

В 1518 году он довольно долго пробыл в Кракове по случаю бракосочетания короля Польши с дочерью миланского герцога. Вероятнее всего, ученый итальянец во время своего визита в столицу Польши услышал, что каноник епархии в Вармии (зависимая польская территория) и доктор, получивший степень в Феррарском университете (которого он, быть может, вспомнил как старого однокашника), занят разработкой новой системы мироустройства, основанной на той идее, что Земля находится не в состоянии покоя, а в движении. Это всего лишь предположение, но так или иначе Кальканьини (по-видимому, до 1525 г.) написал эссе Quod caelum stet, terra moveatur, vel de perenni motu terrae, «О том, что небо неподвижно, а Земля вращается, или О вечном движении Земли».

Ни одна из его работ не была издана при жизни, но в 1544 году в Базеле их собрали и напечатали инфолио, где упомянутое эссе занимает восемь страниц. Автор начинает с утверждения, что все небо с Солнцем и звездами не обращается в течение суток с невероятной скоростью, а вращается Земля; и он ссылается на цветы и растения, которые постоянно обращаются к Солнцу, так что вполне естественно, что разные части Земли тоже каждая в свою очередь поворачиваются к Солнцу. Земля находится в центре и не может спуститься ниже; но ее масса и вес привели ее в движение, и ее части начали перемещаться так, что она, не сходя с места, начала вращаться, причем ее пуп, который мы называем центром, покоится в неподвижности, а шар вращается непрерывно сам по себе; ибо, получив однажды толчок от природы, он никогда не сможет остановиться, не разлетевшись на части. С другой стороны, легкость и чистота пятого элемента, из которого состоит небо, делает его неподвижным.

Это фактически все, что Кальканьини имеет сказать по этому вопросу, однако ему удается облечь это в пространное многословие с цитатами из Платона и Аристотеля, не заботясь об их уместности, и россыпью греческих слов тут и там для красоты. Но ближе к концу сочинения он, видимо, чувствует, что вращение Земли не вполне все объясняет, и собирается с силами для нового броска. То, что Земля не только совершает одно непрерывное движение, но и склоняется то в одну сторону, то в другую, проявляется в солнцестояниях и равноденствиях, росте и убывании луны, разной длине теней. У тех, кто живет вблизи полюса и у кого день и ночь длятся по шесть месяцев, должны понимать это лучше, чем кто-либо другой. А если кто-нибудь будет настаивать, чтобы все это ему объяснили, пусть объяснят причину наклона эклиптики или почему Луна может отступать на пять градусов от зодиака, не говоря уже о трепете восьмой сферы или разнообразных движениях эпициклов и деферентов. Все это современные изобретения, и люди искали и ищут причины явлений на небе, а не на земле. Было бы нелепо и недостойно щедрости Провидения, если бы Земля совершала лишь одно непрерывное движение, ведь другая часть Земли всегда оставалась бы в темноте. Наконец, Кальканьини говорит, что, если уж Архимед обещал перевернуть земной шар, если бы имел точку опоры, он, видимо, считал Землю способной двигаться, и затем, процитировав слова Цицерона о Никете (Гикете) и платоновского «Тимея», он заканчивает ссылкой на Кузанского, труды которого хотел бы увидеть.

Эти последние ссылки показывают, что Кальканьини знал о том, что другие до него учили вращению Земли. Но его слабые попытки показать, что оно возможно, что некое неизвестное движение Земли (при котором она не покидает центра мира) может объяснить все небесные явления, не прибегая к каким-либо движениям небесных тел, со всей очевидностью свидетельствуют о его крайне скудных познаниях в астрономии. Создается впечатление, будто он смутно слышал, что каноник из Фрауэнбурга смог объяснить все, допустив движение Земли, но не слышал ничего о том, как именно это было сделано, поэтому ему пришлось ограничиться несколькими бессмысленными фразами. Если сочинение Кальканьини возникло каким-то другим образом, можно лишь предположить, что он ничего не знал об астрономии, кроме одного факта видимого обращения небес за двадцать четыре часа. Если бы Кальканьини ограничился объяснением этого факта вращением Земли, то заслужил бы звание предшественника польского ученого (при условии, что ничего не знал о трудах последнего); но, пытаясь объяснить этим все явления, он лишил себя практически любой возможности претендовать на эту честь.

Хотя эссе Кальканьини не было издано до 1544 года, о нем, вероятно, знали в Италии при его жизни, так что вполне возможно, что именно на него ссылается Франческо Мавролико из Мессины, известный астроном и математик (1494– 1575), в своей «Космографии» (Венеция, 1543 г.). В этой книге, составленной в форме диалога, учитель говорит, что теперь он закончил все, что хотел сказать о Земле, если только человеческая извращенность не дойдет до того, что кто-то станет утверждать, будто бы Земля вращается вокруг своей оси. На ответ ученика, что такое странное мнение едва ли может прийти кому-то в голову, учитель замечает, что многие проповедуют даже еще большие нелепости, и потому имеет смысл доказать, что Земля двигаться не может.

Предисловие к этой книге датировано февралем 1540 года, но год издания 1543, таким образом, вопрос, на кого ссылается Мавролико – на Кальканьини или Коперника, остается открытым. Можно добавить, что во всех отношениях эта книга абсолютно средневековая по своим идеям. Орбита Солнца находится посреди орбит планет, потому что нижние и верхние планеты значительно отличаются периодами своих эпициклов и деферентов, годовой период Солнца является для первых периодом в деференте, а для вторых периодом в эпицикле; Венера больше склоняется к северу, поэтому обладает большим достоинством и должна быть выше Меркурия, в то время как Меркурий многообразием своих движений больше схож с Луной и, следовательно, должен быть расположен рядом с ней. У Сатурна и Луны наименьшие эпициклы, а вершины их деферентов далеки от вершины деферента Солнца, в то время как планеты рядом с Солнцем – Венера и Марс находятся к нему очень близко [В тезисе об орбите Солнца он ссылается на Региомонтана, остальные идеи принадлежат ему].

Как мы увидим, Мавролико на протяжении всей своей долгой жизни оставался яростным противником учения Коперника.

Здесь было бы излишне делать обзор того немалого количества книг «о сфере» и других учебных пособий по астрономии, которые появились в первой половине XVI века. Они показывают, что труд александрийских астрономов к тому времени был уже хорошо известен и высоко оценен в Европе, но в то же самое время они показывают и то, что до сих пор никто не попытался продолжить и расширить этот труд. Первое латинское издание «Синтаксиса» Птолемея увидело свет в Венеции в 1515 году; но это был лишь старый перевод с арабского Герарда Кремонского, сделанный еще в XII веке; следующим шел перевод с греческого Георгия Трапезундского (Париж, 1528 г., и Базель, 1551 г.), и, наконец, греческий оригинал был напечатан в Базеле в 1538 году по рукописи, которая когда-то принадлежала Региомонтану, вместе с комментарием Теона, так что любой, кто умел читать по-гречески, мог теперь сам проверить латинские переводы. Лишь через пять лет после греческого издания Птолемея появилась работа, которой суждено было стать краеугольным камнем современной астрономии, а пока предпринимались последние отчаянные усилия, чтобы возродить теорию твердых сфер и таким образом еще раз попытаться ответить на старое возражение против системы Птолемея, которое заключалось в том, что, хотя она и дает удобный способ вычислений, ее трудно принять в качестве физически истинной системы мира.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Возрождение астрономии в Европе (3)

Новое сообщение ZHAN » 13 янв 2019, 20:39

Эту попытку почти одновременно сделали два итальянских автора – Фракасторо и Амичи, из которых первый немало прославился своими трудами, а второй остался практически неизвестен. Рассмотрим сначала идеи первого.

Джироламо Фракасторо родился в 1483 году в Вероне. Получив образование в Падуанском университете, он занимал там же должность профессора логики с 1501 по 1508 год, и, так как Коперник проучился в Падуе несколько лет начиная с осени 1501 года, едва ли можно сомневаться, что два молодых человека, оба интересующиеся астрономией и медициной, знали друг друга в Падуе и, может быть, даже обсуждали друг с другом недостатки системы Птолемея.
Изображение

В 1508 году Фракасторо вернулся в Верону, где провел остаток жизни до самой смерти в 1553 году, посвятив себя медицине, астрономии и поэзии. Его основная работа Homocentrica вышла в Венеции в 1538 году, хотя вполне возможно, что еще более раннее издание увидело свет уже в 1535 году. В Падуе Фракасторо свел дружбу с тремя братьями делла Торре, один из которых известен как соратник Леонардо да Винчи в его исследованиях анатомии, а другой – Джованни Баттиста – посвятил себя астрономии и разработал схему, представляющую движение планет без эксцентров и эпициклов, с использованием исключительно гомоцентрических сфер. Он умер в раннем возрасте, но на смертном одре попросил Фракасторо оформить его идеи в новой астрономической системе; и в исполнение данного обещания Фракасторо подготовил свой трактат «Гомоцентрика», в котором, правда, не строго следовал методам делла Торре.

Все это он рассказывает в посвящении папе Павлу III (тому же папе, которому несколько лет спустя будет посвящен великий труд Коперника), но не уточняет, какая часть системы принадлежит делла Торре. Надо надеяться, что сам Фракасторо понимал собственную систему во всех подробностях, хотя, прямо скажем, он не обладал даром четкого изложения всех деталей своего громоздкого механизма, который предложил в качестве замены элегантной геометрической системе Птолемея. Возможно, именно своей непонятности книга обязана полным провалом у читателей, но, как бы то ни было, время для попыток реанимировать идеи Евдокса и Каллиппа давно прошло. За сто лет до того, когда в Европе система Птолемея была известна лишь в общих чертах, возможно, и был какой-то смысл предлагать вместо нее систему Евдокса. Но голос этого древнего призрака совершенно потонул в грохоте разразившихся вскоре после публикации книги Фракасторо битв о том, движется или не движется Земля, и никто даже не счел целесообразным потратить время на подробное изучение «Гомоцентрики». Мы, однако, кратко укажем главные особенности этой системы.

Вспомним, что Каллиппу с помощью гомоцентрических сфер удалось неплохо отобразить движения планет, насколько они были ему известны [Фракасторо неоднократно ссылается на Евдокса и Каллиппа, а в посвящении еще и на «Альбатетика», под которым он, вероятно, имеет в виду Альпетрагия, то есть Аль-Битруджи, чья книга была опубликована незадолго до того (в 1531 г.)]. Но теперь уже приходилось учитывать новые явления, а именно зодиакальное неравенство планет и прецессию с ее (воображаемым) дополнением в виде трепета, и это требовало увеличения количества сфер.

Фракасторо, однако, не просто действует по тому же принципу, что и Евдокс с Каллиппом, но, следуя примеру делла Торре, хочет, чтобы оси всех его сфер находились под прямым углом друг к другу. Он показывает, что каждое движение в пространстве можно разложить на три составляющие, расположенные под прямым углом друг к другу, и, наоборот, три движения под прямым углом друг другу будут производить «движения по долготе, как и по широте». Он полагает, что внешняя сфера может сообщать свое движение внутренней, в то время как внутренняя не влияет на внешнюю, и таким образом он позволяет перводвигателю сообщать свое суточное вращение всем планетам без того, чтобы, как Евдокс, предполагать по одной сфере на каждую планету для объяснения суточного вращения. Набор сфер обычно включает в себя пять, которые он называет (начиная с самой внешней) circumducens, circitor, contravectus, anticircitor и ultimus contravectus, из которых четвертая и пятая вращаются в противоположную сторону относительно вращения второй и третьей и в целом с различными скоростями. Он показывает, что вторая и третья сферы могут производить колебания или «трепет», и говорит, что точки равноденствия в действительности описывают малые «овалы», а не окружности.

Для неподвижных звезд у него есть пять сфер ниже перводвигателя, период неравенства прецессии (4° в обе стороны) составляет 3600 лет, за каковое время circitor делает один оборот. Пятая сфера находится выше Aplane, к которой прикреплены звезды и Млечный Путь и которая сдвигается на 1° за 100 лет. Ниже ее находится система Сатурна, состоящая из двух наборов по пять сфер, причем особая задача внешней группы состоит в том, чтобы учитывать зодиакальное неравенство по долготе за счет колебания узла, в то время как внутренняя группа объясняет неравенство, зависящее от элонгации от Солнца, периодом которой является синодический период обращения планеты. В обеих группах две внутренние сферы должны противодействовать увеличению широт, которые в противном случае производили бы другие сферы. Ниже сферы, несущей планету Сатурн, расположены сферы Юпитера; первая из них препятствует тому, чтобы сложные движения Сатурна передавались Юпитеру, затем идут две группы по пять сфер; затем сферы Марса числом девять с двумя группами из пяти и трех сфер; затем Солнце с четырьмя сферами, одна чтобы исключить движения Марса и три для годового движения Солнца и его неравенства [Каллипп использовал пять сфер для Солнца, одну для суточного вращения и одну для воображаемого движения по орбите, слегка наклоненной к эклиптике. Последняя, разумеется, Фракастаро не требуется].

Две нижние планеты имеют по одиннадцать сфер, разница между ними и внешними планетами заключается в замене сидерического периода обращения годом в качестве периода вращения внешнего circumducens. У Луны семь сфер; первая – «то, что прочие называют Deferens Draconis», она производит попятное движение узлов, а также предотвращает вмешательство со стороны сферы Меркурия; затем circumducens, который поворачивается за 27 дней и 8 часов; под ним circitor, который поворачивается за 27 дней 13 часов и заставляет Луну попеременно двигаться то быстрее, то медленнее; затем идут contravectus и anticircitor, противодействующие движению circitor по широте; затем второй contravectus и сфера, несущая Луну. Наконец, ниже Луны расположена сфера, не однородная, а более плотная в некоторых местах. Фракасторо, конечно, вынужден признать, что каждая планета подвержена изменениям яркости, что выглядит так, будто они не всегда на одинаковом расстоянии от нас. На это, казалось бы, фатальное возражение против гомоцентрической идеи он отвечает тем, что среда, через которую мы видим планеты, сгущается в отдельных местах, так что предметы, видимые сквозь плотную среду, кажутся больше, чем если смотреть на них сквозь более разреженную среду [В этой главе он замечает, что если наложить две линзы друг на друга, то сквозь них видно яснее, нежели через одну. От этого открытия (сделанного старушкой, носившей две пары очков) лежит долгая дорога до изобретения телескопа].

Вариации в продолжительности затмений он объясняет при помощи последней сферы под Луной, из-за которой Луна кажется больше и отбрасывает большую тень, когда просвечивает сквозь более плотную область. Подобным же объяснением он ограничивается и в случае нередких значительных нарушений в долготе Луны в квадратуре (вызванных эвекцией). Это уж очень простой способ решения серьезных трудностей, и тем более удивительно, что Фракасторо довольствуется этим скверным приемом, поскольку из его слов о том, что деференты Меркурия и Луны являются овалами в теории Птолемея, следует, что он должен был быть хорошо знаком с «Альмагестом».

Что касается последней подлунной сферы, то Фракасторо отмечает, что предполагать ее – не в новинку, ведь ее существование допускали уже Сенека и другие философы для объяснения движения комет. Более того, он правильно сделал, что допустил движение комет ниже Луны, так как впоследствии (когда Тихо Браге убедительно доказал, что кометы более удалены от Земли, чем Луна) это стало одним из самых сильных аргументов против концепции твердых сфер, что кометам приходится проходить сквозь них со всех сторон. Фракасторо описывает несколько комет, которые наблюдал сам, и делает важное замечание, что хвосты комет всегда повернуты прочь от Солнца. В этом, во всяком случае, он был прав.

Таким образом, количество сфер в теории Фракасторо следующее:
8 несущих звезды и планеты,
6 для суточного вращения и прецессии,
10 для Сатурна,
11 для Юпитера,
9 для Марса,
4 для Солнца,
11 для Венеры,
11 для Меркурия,
6 для Луны,
1 подлунная сфера.

Всего 77. Но Фракасторо прибавляет, что Солнцу совсем не помешали бы еще две сферы, что в итоге дало бы всего 79 сфер. И эту систему он считал более разумной, чем у Птолемея!

Одновременно с Фракасторо и, по-видимому, совершенно независимо от него с гомоцентрической системой выступает молодой человек Джованни Баттиста Амичи, издавший небольшую книгу в Венеции в 1536 году. В конце ее автор называет себя двадцатичетырехлетним уроженцем Козенцы, родившимся после смерти своего отца, которого звали так же. Он погиб в Падуе в 1538 году и не опубликовал ничего, кроме этой маленькой книги, которую полностью игнорировали все историки астрономии, быть может, потому, что автор, в отличие от Фракасторо, не приобрел известности другими своими сочинениями.

И все же его книга заслуживает лучшей участи благодаря ясности своего слога и тому, что автор не ограничивается сферами с осями, расположенными под прямым углом друг к другу, но рассматривает проблему с более общей точки зрения. В остальном же он отчасти сходится с Фракасторо; для объяснения суточного вращения планет он не предполагает по одной сфере на планету и дает то же объяснение, что и его соотечественник, изменению видимого размера Солнца и Луны, а также яркости планет. Зимой Солнце кажется больше, потому что его свет проделывает более долгий путь, чтобы достичь наблюдателя на поверхности Земли, и в квадратуре Луна кажется больше, потому что в это время, как и в полнолуние, она не может растворять испарения, и потому воздух больше наполняется туманом.

Рассмотрев в первых шести главах теории Евдокса, Каллиппа и Аристотеля, он замечает, что природа не знает таких вещей, как эпициклы и эксцентры, и далее излагает свои собственные идеи. Сначала он показывает, что если у нас есть две смежные гомоцентрические сферы, оси которых расположены под прямым углом друг к другу, а полюса внешней движутся на некотором расстоянии по обе стороны от среднего положения, то движение на внутренней сфере будет попеременно ускоряться и замедляться. Но затем он демонстрирует, что, если полюса обеих сфер находятся в n градусах друг от друга и если одна вращается в два раза быстрее, чем другая в обратном направлении, они будут производить колебание на дуге 4n°, и в этом выказывает себя способным учеником античных мыслителей.

Солнцу достаточно четырех сфер, но Луне и пяти планетам (которые он сводит в одну группу) требуется больше. Сначала он говорит, что, если Луна перемещается на эпицикле, она не всегда повернута к нам одной и той же стороной (потому что, в соответствии со средневековыми идеями, тело должно быть всегда повернуто одной и той же стороной к центру движения), и, следовательно, другие планеты тоже не могут иметь эпициклов, так как небесные тела похожи во всех отношениях. Чтобы заменить действие эпицикла, он дает им первые четыре сферы. У самой высокой полюсы находятся в плоскости орбиты (наклонной окружности, как он ее называет), и она движется с севера на юг со скоростью, с которой двигался бы эпицикл. Под ней находится другая сфера, чьи полюсы в системе Птолемея удалены от полюсов первой на одну четвертую углового диаметра эпицикла в апогее и которая движется в противоположную сторону относительно первой с удвоенной скоростью. Дальше идет третья сфера, чьи полюсы находятся под теми точками второй, которые перемещаются взад-вперед, и она движется с юга на север. И наконец, у четвертой сферы оси находятся под прямым углом к наклонной окружности (в которой расположены полюсы третьей сферы), на наибольшей окружности которой прикреплена сфера планеты и время от времени производит видимое попятное движение. Только Луна вследствие очень быстрого движения своей четвертой сферы не движется попятно, а лишь замедляется.

Дальше Амичи нужно объяснить «изменения в движении Луны и разную величину попятного движения планет». С этой целью он помещает между сферами еще три, чтобы перемещать взад-вперед полюсы нижней и таким образом вызывать изменения в дуге попятного движения. Чтобы избежать чрезмерного увеличения широты, ему приходится добавить еще три сферы, таким образом получив по десять на каждую планету; а у Луны есть еще и одиннадцатая сфера за пределами других, чтобы обеспечить движение узлов. Но видимо Амичи понимает, что всего этого в конечном счете может оказаться недостаточно, поскольку отмечает, что требуются дальнейшие наблюдения за пятью планетами, чтобы установить значения того, что в его системе соответствует наклонам эпициклов. Наклон диаметра в аномалии 0—180° он объясняет еще тремя сферами, а для обликвации диаметра 90—270° (reflexio, как он это называет) он добавляет еще один набор из трех сфер! [Он цитирует из Птолемея значения 10′ для Венеры и 45′ для Меркурия. Это единственные цифры, которые он приводит во всей книге в связи с планетами, не считая 59′8″ для суточного движения Солнца.]

Что касается неподвижных звезд, то Амичи верит в очень медленное движение девятой сферы (годовая величина не указана), а также в движение восьмой сферы, называемое titubatio, при котором ее точки равноденствия поворачиваются за 7000 лет на небольших кругах радиусом 9° вокруг точек равноденствия девятой сферы.

Печально думать, что этот молодой человек, очевидно большого таланта, которому жестокая судьба оставила этот единственный шанс отличиться, впустую растратил свои силы на бесплодные попытки приспособить к современным требованиям теорию, возникшую еще в младенческие годы науки. Его возраст не позволяет нам думать, что он мог быть учеником делла Торре, но все же есть вероятность, что Амичи, возможно, слышал об идеях падуанского профессора и разработал на их основе собственную полную систему. Бесполезно рассуждать о том, чего он мог бы достичь, если бы его жизнь не оборвалась так преждевременно; попытался бы он вычислить точные значения данных для своей системы, или его озарил бы новый свет, исходящий из комнаты фрауэнбургского каноника. Ибо в то время как в Италии, в центре цивилизации, Фракасторо и Амичи тщетно пытались вдохнуть жизнь в мумию, в то время как Кальканьини самым самодовольным образом делал вид, будто какое-то движение Земли, не требующие ее удаления от центра мира, могло разрешить все загадки звездного неба, в то время как Мавролико доказывал самым посредственным умам, что Земля никоим образом не может двигаться, тихий ученый на побережье Балтийского моря, на самой окраине цивилизации, готовился зажечь свет, которому суждено было осиять всю Вселенную и показать изумленному человечеству Землю, летящую сквозь пространство.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Коперник

Новое сообщение ZHAN » 15 янв 2019, 13:51

Никлас Коперник родился 10 февраля 1473 года в городе Торунь (бывший Торн) на Висле, где его отец (о чьем происхождении наверняка ничего не известно, но который переселился из Кракова в Торн до 1458 года) был зажиточным торговцем. Вместе с Западной Пруссией и Вармией (бывший Эрмланд) Торунь в 1466 году перешла под власть польского короля, но еще не была включена в состав Польши. Коперник, или Коперникус, как он затем стал писать свое имя [Его фамилия совершенно точно писалась Koppernigk. Известны 29 его автографов. Из них первые шестнадцать (относящиеся к 1512– 1528 гг.) написаны с буквами рр (но без окончания us), пять не датированы, встречаются в принадлежащих ему книгах, из которых четыре написаны с рр (три с us, одна без него), а пятая на греческом с одной π. В 1537 году Nicolaus Coppernic подписал избрание нового епископа. Однако семь писем его последних лет (1537—1541) подписаны Nicolaus Copernicus, так же его имя писал и его единственный ученик Ретик. Таким образом, представляется, что Коперник за шесть лет до смерти решил писать свое имя на латыни с одним р, и думаю, нет никаких причин сейчас менять написание, которое признавалось всеми в течение 300 лет], в 1491 году отправился учиться в Краковский университет, последовав примеру многих других студентов из Центральной Европы, но, помимо того, в Краков его привлекло и то, что там уделяли особое внимание математике и астрономии.

Астрономию ему преподавал Войцех (Альберт) из Брудзева, вероятно в виде частных уроков, поскольку после 1490 года его учитель, видимо, читал лекции только по Аристотелю. В 1482 году Войцех (его фамилия неизвестна) написал комментарий к Theoricae novae planetarum Пурбаха, чтобы им могли пользоваться его ученики. Он был издан в Милане в 1495 году и является первым из серии комментариев к этому популярному учебнику, опубликованных в последующие сто лет. Учитывая состояние преподавания математики в то время, это, несомненно, было весьма полезным для облегчения тернистого пути студента, стремящегося проникнуть в дебри планетной теории, и автор показал себя способным вывести все заключения, логически вытекающие из системы Птолемея; как, например, когда он замечает, что центр эпицикла не только Меркурия, но и Луны должен описывать овальную фигуру. Но хотя Войцех из Брудзева может претендовать на то, что он первым преподавал астрономию будущему реформатору этой науки, нет никаких причин думать, что именно он внушил своему ученику идею возможности или вероятности движения Земли. В своей книге он полностью принимает систему Птолемея, как, впрочем, и полагалось ему как университетскому преподавателю; однако вполне возможно, что он указал ученику на необычайную роль, которую играет Солнце в теориях планет, и, может быть, этим заронил в великом разуме молодого студента мысль, а не содержится ли в нем ключ к загадкам планет. Но это великое открытие так долго витало в воздухе, готовое явиться любому смелому мыслителю, что едва ли можно говорить о том, что Коперник обязан вдохновением какому-либо наставнику или другу.

Войцех из Брудзева покинул Краков в 1494 году [И умер на следующий год], и, вероятно, Коперник вернулся домой в том же году. Однако его дядя по материнской линии Лукаш Ватценроде, епископ Варминский с 1489 года [Варминское (прежде Эрмландское) епископство, находившееся под протекторатом Тевтонского ордена, а с 1466 года – короля Польши, представляло собой практически независимое княжество, и тамошний епископ считался князем. Вармия находилась между Восточной и Западной Пруссией, собор ее размещался в Фрауэнбурге на берегу Вислинского (ныне Калининградского) залива (северо-восточнее Эльблонга, на широте 54°21′84″), примерно на полпути между Данцигом (Гданьском) и Кенигсбергом (Калининградом)], который намеревался обеспечить будущность племянника, при первой же возможности пристроив его на должность каноника в соборе Фрауэнбурга, выразил желание, чтобы тот сперва расширил свое образование в итальянских университетах.

Так Коперник в 1496 году отправился в Италию и 6 января 1497 года стал одним из студентов Natio Germanorum в Болонском университете. Примерно за три с половиной года, которые он там провел, Коперник не только изучил греческий и познакомился с сочинениями Платона. Безусловно, особо важным для его астрономических штудий стало его тесное знакомство с довольно авторитетным астрономом Доменико Марией Новарой (1454—1504), «скорее в качестве друга и помощника, нежели ученика», как говорит нам ученик Коперника Ретик.

Новара был астрономом-практиком; в 1491 году он, например, определил, что наклон эклиптики едва превышает 23°29′, и пример Новары, по-видимому, побудил Коперника обратить взгляд к небу, так как его первое зафиксированное наблюдение (покрытие Альдебарана) было сделано 9 марта 1497 года. В истории астрономии имя Новары известно лишь воображаемым открытием, о котором он объявил. Определив широты нескольких городов и найдя значения, более или менее отличающиеся от приведенных у Птолемея, в частности для Кадиса, где разница достигала почти градуса, он заключил, что полюс сдвинулся на Г10′, приблизившись к зениту в этих городах (versus punctum verticalem delatum). Эта идея более ста лет привлекала большое внимание, хотя большинство авторов пришло к выводу, что указанного изменения в действительности не существует [Тихо Браге и Уильям Гильберт упоминают о нем весьма неодобрительно. Кеплер, с другой стороны, в начале своей карьеры был склонен в него верить].

Каким бы полезным ни было для Коперника знакомство с Новарой, можно считать установленным, что ни он, ни любой другой итальянский ученый не сеял семени, которое в конечном счете произвело на свет плод, прославившийся как система Коперника [Тирабоски, говоря о Новаре и Копернике, прибавляет, что некоторые авторы приписывают первый замысел этой системы Джироламо Тальявии из Калабрии, который жил примерно в то же время, и в качестве источника указывает Томмазо Корнелио, писателя XVII века. Однако он достаточно беспристрастен, чтобы заметить, что никаких оснований соглашаться с этой легендой нет].

Из Болоньи Коперник перебрался в Рим весной 1500 – великого юбилейного года и оставался там примерно год. Единственная подробность, известная о его пребывании в Риме, – это что, по словам его ученика Ретика, Коперник читал там курс лекций по «математике», под чем он, вероятно, имеет в виду астрономию. В 1501 году Коперник вернулся домой, чтобы занять должность каноника в Фрауэнбурге, на которую его избрали (почти наверняка заочно) еще за три года до того. 27 июля он занял свое место в кафедральном капитуле и получил разрешение на дальнейшее отсутствие с целью продолжения образования, в которое он решил включить и медицину. Тем же летом он вернулся в Италию, на этот раз в Падую, где продолжил изучать право и медицину в течение четырех лет с небольшим перерывом в 1503 году, когда он отправился в Феррару и 31 мая получил там степень доктора канонического права.

Самое позднее в начале 1506 года Коперник покинул Италию, где провел около девяти лет, и, хотя мы почти ничего не знаем о том, с какими людьми он поддерживал знакомство и каким образом продолжал свои исследования, тем не менее у нас нет никаких сомнений в том, что во время долгого пребывания в двух известнейших итальянских университетах он должен был овладеть всеми доступными на то время знаниями в области классической литературы, математики и астрономии, а также теологии.
Изображение

С 1506 до смерти в 1543 году Коперник жил в Вармии, обычно в Фрауэнбурге, где простые обязанности в соборе оставляли ему много свободного времени для научной работы, хотя ему приходилось порой откладывать ее, чтобы исполнять свою роль в управлении маленьким княжеством. Об этой стороне его жизни нам известно очень многое, но как печально, что мы ничего не знаем о том, вел ли он переписку с кем-то из ученых современников, хотя в любом случае ему нечему было у них научиться. Так или иначе, слава упорного исследователя астрономии наверняка распространилась из его весьма отдаленной родины в более центральные части Европы.

В 1514 году, когда на Латеранском вселенском соборе встал вопрос о реформе календаря, Павел Миддельбургский, епископ Фоссомбронский, пригласил Коперника выступить по этому поводу, но, хотя приглашение поддержал его личный друг и коллега по варминскому капитулу (Бернгард Скультети), Коперник его отклонил, поскольку считал, что движение Солнца и Луны пока еще недостаточно изучено, чтобы окончательно решить этот вопрос. Однако несколько лет спустя другому знакомому удалось уговорить его высказаться по другому научному вопросу.

В 1522 году Иоганн Вернер из Нюрнберга опубликовал небольшой трактат De motu octaves sphaerae, «О движении восьмой сферы», где рассуждал о проблеме прецессии и трепета. Бернард Ваповский, краковский каноник, обратил внимание Коперника на это сочинение и спросил, что он об этом думает. Длинный ответ, хотя и не опубликованный, судя по всему, был предназначен для распространения среди друзей и, разумеется, впоследствии был забыт, пока в конце концов его не издали в 1854 году [У Тихо Браге была его копия, которую он упоминает в своей книге. Впервые он был напечатан в варшавском издании трудов Коперника в 1854 году, которое кишмя кишело ошибками]. Он содержит очень резкую критику в адрес трактата Вернера, причем время от времени Коперник прибегает к довольно сильным выражениям. Он прямо не возражает против предполагаемой изменчивости величины годовой прецессии (более того, в своем великом труде он с ней соглашается), но указывает на хронологическую ошибку в одиннадцать лет, допущенную Вернером при определении даты наблюдения, сделанного Птолемеем, и указывает, насколько безоснователен его вывод о более быстром движении восьмой сферы в период от Птолемея до Альфонсо, чем в последующий период, притом что в течение четырехсот лет до Птолемея оно было равномерным. Особенно интересно посмотреть, как Коперник показывает, что, когда точка равноденствия в своем прохождении по малому кругу трепета пересекает эклиптику, годовая величина прецессии меняется наиболее быстро, тогда как изменение равно нулю в двух точках в 90° от точек пересечения, причем фактическая величина достигает в них максимума и минимума. Вернер полагал, что имеет место ровно противоположное, то есть что функция будет быстрее всего меняться в максимуме или минимуме.

Мы находим, что с этим единственным исключением Коперник не позволял себе отвлекаться от упорной работы над астрономическим трудом, который он, видимо, запланировал вскоре после возвращения из Италии. Масштабные наблюдения за небом не входили в его планы, да и не принесли бы большой пользы, поскольку он никак не улучшил существовавших на тот момент инструментов. Коперник лишь время от времени вел отдельные наблюдения, в основном затмений и противостояний планет, что позволило ему заново определить некоторые элементы орбит. Двадцать семь наблюдений такого рода, сделанных с 1497 по 1529 год, указаны в его работе «О вращении небесных сфер», в приложении к которому Коперник упоминает, что в течение тридцати лет не раз определял наклон эклиптики. Было найдено еще несколько наблюдений, записанных в книги из его личной библиотеки, которые сохранились до наших дней. Но работа, которой Коперник посвятил всю свою жизнь, велась не в обсерватории, а в кабинете; ее целью было разработать новую астрономическую систему, столь же завершенную, как птолемеевская, основанную на идее о том, что Земля не является центром мира, а, как и другие планеты, движется вокруг Солнца.

Как Коперник впервые пришел к мысли, что центром движения является Солнце? Может быть, на него повлияли те древние мыслители, кто приписывали некоторое движение Земле, или же он сначала сам вывел из теории эпициклов тот факт, что Земля обладает годовым движением, а затем нашел поддержку и ободрение у древних, вспомнив, что и они разделяли подобные идеи? Он очень мало рассказывает нам о пройденном пути.

В возвышенном посвящении папе Павлу III, которым открывается его книга, Коперник говорит, что впервые его побудило отправиться на поиски новой теории небесных тел то, что, как он обнаружил, математики сильно расходились между собой по этому вопросу. Перечислив разнообразные системы эпициклического, эксцентрического и гомоцентрического движения, а также их недостатки, мешающие их принять, он заключает, что, видимо, все они упускают нечто важное или вводят нечто чуждое для рассматриваемых объектов и этого бы не произошло, если бы соблюдались достоверно установленные принципы. Поэтому он взял на себя труд прочесть труды всех философов, которые только мог достать, и выяснить, не выражал ли кто-нибудь из них мнение, что движения сфер мира отличаются от тех, что преподают на уроках математики в школах. И он нашел у Цицерона, что Никет (Гикет) считал, будто Земля находится в движении, а у Плутарха (то есть Псевдо-Плутарха), что и другие разделяли это мнение. Он приводит греческий текст Placita Philosophorum о Филолае, Гераклите и Экфанте и продолжает:
«Побуждаемый этим, я также начал размышлять относительно подвижности Земли. И хотя это мнение казалось нелепым, однако, зная, что и до меня другим была предоставлена свобода изобретать какие угодно круги для наглядного показа явлений звездного мира, я полагал, что и мне можно попробовать найти (в предположении какого-нибудь движения Земли) для вращения небесных сфер более надежные демонстрации, чем те, которыми пользуются другие математики. Таким образом, предположив существование тех движений, которые, как будет показано ниже в самом произведении, приписаны мною Земле, я, наконец, после многочисленных и продолжительных наблюдений обнаружил, что если с круговым движением Земли сравнить движения и остальных блуждающих светил и вычислить эти движения для периода обращения каждого светила, то получатся наблюдаемые у этих светил явления. Кроме того, последовательность и величины светил, все сферы и даже само небо окажутся так связанными, что ничего нельзя будет переставить ни в какой части, не произведя путаницы в остальных частях и во всей Вселенной».
[Книга «О вращении небесных сфер» цитируется по изданию: Коперник Н. О вращениях небесных сфер. Малый комментарий. Послание против Вернера. Упсальская запись / Пер. И.Н. Веселовского. М., 1964].

Как следует из этих слов, Коперник сначала заметил, насколько велика разница мнений среди ученых относительно движений планет; затем он обратил внимание, что некоторые из них даже приписывали некоторое движение Земле, и, наконец, он задумался, не поможет ли делу, если допустить гипотезу подобного рода. Об этом можно было бы догадаться, если бы даже Коперник не сказал ни слова. Видимо, ему показалось странным совпадением, что обращение Солнца вокруг зодиака и обращения центров эпициклов Меркурия и Венеры вокруг зодиака происходят за один и тот же период – за год, тогда как для эпициклов трех внешних планет этот период соответствует синодическому, то есть времени между двумя последовательными противостояниями с Солнцем. Эта любопытная связь между Солнцем и планетами, должно быть, приходила в голову многим философам, но в итоге эту задачу взял на себя человек совершенно непредвзятого образа мыслей, с ясным математическим разумом. Вероятно, его вдруг озарило, что, быть может, каждый из деферентов двух внутренних планет и эпициклов трех внешних всего лишь является представлением орбиты, которую в течение года проходит Земля, а не Солнце! Чувства, овладевшие им, когда он осознал, что эта гипотеза действительно «спасает явления», по выражению древних, что она объясняет, почему Меркурий и Венера всегда находятся рядом с Солнцем и почему у всех планет наблюдаются такие странные нерегулярности годовых движений, его чувства после открытия такой ясной и красивой в своей простоте разгадки извечной тайны, наверное, были столь же велики, как те, что обуревали Ньютона после открытия закона всемирного тяготения. Но об этом Коперник умалчивает.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Коперник (2)

Новое сообщение ZHAN » 16 янв 2019, 15:00

Этим путем мог идти Коперник, но мы не можем точно сказать, что именно так он пришел к своей системе. В начале первой книги он показывает, насколько более разумно предположить, что Земля вращается вокруг своей оси в двадцать четыре часа, нежели думать, будто все небесные тела проносятся за то же время с невообразимой скоростью; и он легко опровергает возражения древних против вращения Земли, указывая, что если воздух вращается вместе с суточным движением Земли, то оно не нарушит ничего ни парящего в воздухе, ни на поверхности Земли [В пятой главе он снова ссылается на Гераклита, Экфанта и Гикета, которые учили вращению Земли].

Затем, в девятой главе, он задается вопросом, может ли Земля обладать более чем одним движением, и приходит к выводу, что в таком случае эти движения «необходимо должны быть такими же, какие замечаются внешне и у других планет; среди этих движений мы находим годичное обращение». Это годичное обращение Земли вокруг Солнца, говорит он (не вдаваясь здесь в подробности), объясняет стояние и попятное движение планет. В десятой главе Коперник рассматривает порядок расположения планет. Упомянув, что некоторые из древних помещали Меркурий и Венеру ниже Солнца, а другие – выше его, он показывает, что теория, описанная у Марциана Капеллы, по которой эти две планеты в действительности движутся вокруг Солнца, может объяснить их тесную зависимость от него.
«Если теперь кто-нибудь на этом основании отнесет к тому же центру и Сатурн с Юпитером и Марсом, определив только величину их орбит так, чтобы они вместе с этими планетами охватывали и окружали неподвижную Землю, то не ошибется, как показывают числовые отношения их движений».
Может показаться, будто это указывает на то, что исследование орбит Меркурия и Венеры подтолкнуло Коперника к выводу, что внешние планеты аналогичным образом движутся вокруг Солнца, хотя прямо он этого не говорит. Его ученик Ретик поясняет, что примечательная разница между яркостью Марса, восходящего вечером и восходящего утром, подсказала Копернику, что планета не движется вокруг Земли, поскольку эпицикл не может объяснить большое изменение расстояния, о котором свидетельствует большое изменение яркости. Но если бы Коперник рассуждал таким образом, следовало бы ожидать, что годовое движение Земли последним пришло бы ему в голову; иными словами, естественно было бы сначала предположить, что пять планет движутся вокруг Солнца, а затем уже в качестве завершающего штриха добавить, что и Земля делает то же самое. Однако он начинает с того, что движения Земли должны быть «такими же, какие замечаются внешне и у других планет». Это говорит нам о том, что сначала Коперника озарило, что все эпициклы внешних планет, плоскость которых всегда параллельна плоскости эклиптики и которые несут свою планету по окружности за период, тесно связанный с Солнцем, представляют собой не что иное, как образ, так сказать, орбиты, описываемой Землей, и что дифференты Меркурия и Венеры идентичны этой орбите.

Как бы там ни было, совершенно точно, что Коперник был очень мало обязан древним мыслителям, если обязан вообще. Он не совершил ошибки (которую так упорно допускали после него вплоть до наших дней), предположив, что Филолай проповедовал гелиоцентрическую теорию. В посвящении он верно цитирует утверждение Аэция, что Филолай позволял Земле вместе с Солнцем и Луной двигаться вокруг центрального огня, а говоря о вращении Земли, он лишь упоминает, что Филолай высказывал мнение, что Земля вращается, имеет несколько движений и является одной из планет. Мы не можем сомневаться в том, что он отчетливо понимал своеобразный характер системы Филолая из полного ее описания у Аристотеля и Аэция; и хотя он, вероятно, не был знаком с комментарием Симпликия, он вполне мог знать комментарий Фомы Аквинского [Первое издание Симпликия вышло в Венеции в 1826 году, но это был лишь греческий пересказ латинского перевода Вильема из Мербеке. Этот перевод был напечатан в Венеции в 1540 году].

Больше нигде Коперник Филолая не упоминает, и в печатном издании книги «О вращении небесных сфер» нет ни одного намека на Аристарха. Однако в ее рукописном оригинале после главы XI первой книги идет длинный отрывок, зачеркнутый черными чернилами и потому не напечатанный. Начинается этот отрывок так:
«И если мы признаем, что движение Солнца и Луны может быть также объяснено и в предположении неподвижности Земли, то для других планет это объяснение мало подходит. Поэтому можно думать, что на основании этих и им подобных соображений Филолай пришел к мнению о движении Земли; некоторые передают, что такого же мнения держался и Аристарх Самосский, и ни на одного из них не производили впечатления те рассуждения, которые приводил и осуждал Аристотель. Но поскольку эти положения могут быть поняты только острым умом и после продолжительного размышления, то они ускользнули от большинства философов, кроме того, было очень невелико число тех, которые были в то время опытны в объяснении движения светил, о чем не умалчивает и Платон. Если же все это и было понято Филолаем или каким-нибудь другим пифагорейцем, то, однако, похоже на истину, что до потомков это не дошло. Действительно, у пифагорейцев была заповедь: ничего не передавать письменно и не открывать философских тайн всем людям».
В доказательство последнего замечания Коперник затем дает перевод одного из многих поддельных писем, состряпанных разными авторами поздней Александрийской эпохи, а именно от Лисида Гиппарху. Оно рассуждает только о любви пифагорейцев к таинственности, но ничего не говорит ни о Филолае, ни об Аристархе.

Как мы уже говорили, ничего этого нет в изданном труде Коперника. Он, кроме того, не ссылается и на других до-птолемеевских астрономов в остальных главах своего труда, за исключением того, что в пятой книге он приводит греческие названия планет и упоминает имя Аполлония в связи с теорией эпициклов [Евдокс нигде не упоминается, а Каллипп – только в связи с его эрой или продолжительностью года; но в начале «Малого комментария» (о котором речь пойдет ниже) Коперник говорит: «Этого (сохранения принципа равномерности при объяснении движения светил. – Пер.) не могли добиться Каллипп и Евдокс, старавшиеся получить решение посредством концентрических кругов и ими объяснить все особенности движений планет, не только относящиеся к видимым круговращениям звезд, но даже и те, когда, как нам кажется, планеты то поднимаются в верхние части неба, то опускаются, чего, конечно, концентричность никак не может допустить»].

Но больше ему нечего сказать о древних, ибо только один из них – Птолемей сформулировал законченную астрономическую систему, и к нему Коперник питал то восхищение, которое заслужил сам, потому что труд всей его жизни превзошел свершения александрийского астронома. Совершенно ошибочная система Филолая и расплывчатое утверждение, что Аристарх допускал движение Земли вокруг Солнца, возможно, помогли Копернику в самом начале направить свой ум в верную сторону, но они не сделали того же для многих великих умов до него.

Книга «О вращении небесных сфер» стала плодом многолетнего труда. В посвящении Коперник говорит, что скрывал ее не только девять лет, а четырежды по девять лет; и если понимать его слова буквально, значит, он должен был иметь четкое представление о новой системе и начать записывать свои идеи в 1506 году или вскоре после, когда проживал у своего дяди в Гейльсберге. Разработка планетных теорий, разумеется, дело очень неспешное, и рукопись готового труда, в настоящее время хранящаяся в библиотеке Ностица в Праге, не старше 1529 года, так как в ее текст внесены наблюдения, сделанные в том году, хотя впоследствии в нее вносились изменения и повторные изменения. С другой стороны, рукопись не могла быть написана позднее 1531 года, так как Коперник не использовал значения апогея Венеры, определенного им в 1532 году и написанного на листке, который вложен в его экземпляр Tabulae directionum Региомонтана. На этом листке, среди прочего, отмечены апогеи Сатурна, Юпитера, Марса и Венеры, определенные соответственно в 1527, 1529, 1523 и 1532 годах по собственным наблюдениям автора. Первые три значения приведены в соответствующих местах книги «О вращении небесных сфер», четвертое (48°30′) не встречается ни в рукописи, ни в печатном издании. Из этого следует, что Коперник написал рукопись до 1532 года, а потом забыл вставить в нее это значение, хотя, судя по всему, он дважды перепроверил все содержание, внеся улучшения и поправки тут и там, изменив разбивку на главы и даже кое-где скорректировав данные.

Видимо, постепенно в ученом мире распространился слух, что Коперник изобрел неслыханную доселе теорию движения планет, и тогда, по просьбе кого-то из друзей, он подготовил очерк своей системы, который разошелся по рукам в виде рукописи. Даже после публикации его подробного трактата этот «Малый комментарий» (Commentariolus) по-прежнему высоко ценился поклонниками Коперника; так, в 1575 году в Регенсбурге лечащий врач императора Тадеаш Гаек вручил Тихо Браге экземпляр комментария, и снятая с него копия, вероятно, в настоящее время хранится в Австрийской национальной библиотеке в Вене. Эта интересная реликвия, копии которой Тихо Браге в течение нескольких лет дарил разным немецким астрономам, но которая впоследствии (как письмо о трактате Вернера) была совершенно забыта, на данный момент издана уже не раз. Комментарий состоит из небольшого введения, в котором Коперник коротко говорит о неспособности теории Евдокса объяснить меняющиеся расстояния до планет и о сомнительной теории эквантов Птолемея, которые побудили автора попытаться установить другой порядок орбит; и затем он излагает главные принципы новой системы в виде шести «требований», или аксиом. Далее следуют семь коротких глав о порядке расположения орбит, тройственном движении Земли, желательности определять движения относительно не равноденствия, а неподвижных звезд, об окружностях, предложенных для движения Луны, внешних планет, Венеры и Меркурия. Коперник приводит относительные размеры всех предложенных окружностей и эпициклов, но без каких-либо доказательств или объяснения причин. То есть комментарий предназначался только для того, чтобы показать читателям, знакомым с деталями системы Птолемея, что представляет собой новая; но в тексте нет ни малейшей попытки убедить читателей в истинности поразительной идеи движения Земли.

Вероятно, именно этот «Малый комментарий» позволил некоему Видманштаду в 1533 году устно поведать папе Клименту VII о новой системе. Три года спустя кардинал Николаус фон Шенберг, архиепископ Капуи, человек весьма свободомыслящий и доверенный советник Климента и его преемника Павла III, написал Копернику, призывая его сделать свое открытие известным ученому миру и прося прислать ему копии всего написанного им вместе с прилагающимися таблицами, причем копии предлагал оплатить из собственного кармана [Письмо датировано 1 ноября 1536 года и напечатано в начале книги «О вращении небесных сфер». Шенберг умер в 1537 году].

Это слишком хорошо известно, чтобы подробно пересказывать здесь, как Коперник, страшась бури, которую непременно должна была вызвать его дерзкая теория, много лет уклонялся от публикации своего великого труда, невзирая на настойчивые уговоры друзей, среди которых особого признания заслуживает Тидеман Гизе, епископ Кульмский, и как в конце концов молодой профессор из Виттенберга Георг Иоахим Ретик, желая узнать хоть что-то достоверное, бросил вызов опасности, связанной с длительным визитом профессора из этого страшного рассадника ереси – Виттенбергского университета в епархию, где только что был обнародован грозный Mandatum wieder die Ketzerei, «Мандат против ересей».

Ретик отправился в Фрауэнбург в 1539 году и провел там около двух лет. Коперник радушно встретил его и дал время изучить свой великий труд, и молодой энтузиаст сразу же принялся составлять его подробный обзор, адресованный его учителю Иоганну Шенеру. Обзор под названием Narratio prima, «Первое повествование», был напечатан в Данциге в 1540 году. Он должен был вызвать немалую сенсацию среди компетентных судей, ибо мы находим, что Эразм Рейнгольд, впоследствии рассчитавший первый набор таблиц в соответствии с новой системой, в своем издании Пурбаховой Theoricae в 1542 году хвалит Коперника как самого выдающегося творца, от которого можно ожидать возрождения астрономии, а в другом месте говорит о нем как о новом Птолемее. Возможно, именно прием, оказанный Narratio prima, наконец-то заставил Коперника уступить уговорам друзей; он поручил драгоценную рукопись Гизе, который отправил ее Ретику, чтобы тот отдал ее в печать. Она была опубликована в Нюрнберге в 1543 году, а копию доставили Копернику в день его смерти 24 мая 1543 года.

Рукопись, которую автор переписывал и сокращал в течение примерно двенадцати лет и которая сохранилась до наших дней, не была использована в типографии, как это можно видеть по тому, что она не очень близко соответствует тексту отпечатанной книги, где были добавлены или повторно вставлены некоторые вычеркнутые автором предложения. Например, при рассмотрении неравенств видимого движения Солнца Коперник добавил на полях, но потом вычеркнул следующее предложение: «Доказательство было бы точно тем же самым, если бы Земля находилась в покое, а Солнце двигалось по обходящей окружности, как у Птолемея и других». Эта фраза встречается в печатном издании. С другой стороны, редактор опустил небольшое введение к первой книге о важности и сложности изучения астрономии. За печатью на первых порах надзирал Ретик, но, когда он был вынужден покинуть Нюрнберг в 1542 году, чтобы занять новую должность профессора в Лейпциге, он доверил свои обязанности Андреасу Озиандеру, широко известному лютеранскому богослову в Нюрнберге, под руководством которого книга и была допечатана. Озиандера, как видно, весьма беспокоил дерзкий характер новой теории движения Земли, которую многие определенно сочли бы весьма нежелательной по богословским и другим соображениям; и чтобы избежать неприятностей для автора и, возможно, для себя, он добавил анонимное предисловие «К читателю. О гипотезах, лежащих в основе этой книги». В нем он утверждал, что, хотя многие сочтут предосудительным учение о движении Земли, по дальнейшем рассмотрении станет ясно, что автор не заслуживает упрека. Ибо цель астронома – собрать воедино историю движений небесных тел на основе тщательных наблюдений, а затем изложить их причины или гипотезы о причинах, если их невозможно установить, таким образом, чтобы эти движения можно было бы вычислить при помощи геометрических принципов. Однако нет необходимости, чтобы его гипотезы были верными или даже вероятными; достаточно того, чтобы основанные на них расчеты согласовывались с наблюдениями. Никто не посчитал бы эпицикл Венеры вероятным, поскольку диаметр планеты в перигее должен быть в четыре раза больше, чем в апогее, чему противоречит весь опыт истории. Наука просто не знает причин кажущихся нерегулярными движений, и астроном предпочитает самую понятную гипотезу. Поэтому давайте прибавим новые гипотезы к старым, так как они замечательны и просты, но не следует ожидать определенности от астрономии, поскольку она не может ее дать; и тот, кто принимает за истину то, что придумано для иной цели, оставит эту науку большим глупцом, чем был, когда лишь брался за нее.

Подобные взгляды Озиандер уже излагал в двух письмах к Копернику и Ретику, написанных в 1541 году в ответ на письмо Коперника, отправленное годом ранее. Кеплер, который имел в распоряжении эти письма Озиандера и цитировал их содержание, не говорит, что написал Коперник в своем письме, за исключением того, что автор с твердостью стоика верил, что должен заявить о своих убеждениях перед миром, даже если это принесет ущерб науке. Однако существует множество фактов, доказывающих, что для Коперника движение Земли было физической реальностью, а не просто рабочей гипотезой. Не говоря даже о том, что нигде в своей работе он не называет его гипотезой, а рассуждает о нем как о реальном движении, стараясь ответить на возражения против него с физической точки зрения, достаточно лишь обратиться к последним строкам его посвящения папе. Там Коперник говорит, что какие-нибудь невежды на основании превратно понятого отрывка из Писания могут обрушиться с обвинениями на его труд, но он лишь пренебрежет их суждением, ведь даже Лактанций, знаменитый писатель, но не математик, практически по-детски рассуждал о форме Земли, осмеивая тех, кто утверждал, что она имеет форму шара. Если бы Коперник всего лишь хотел добавить еще одну вычислительную гипотезу к множеству существующих, он бы не рискнул оскорбить папу, пренебрежительно говоря об Отце Церкви. Его личные друзья хорошо знали, что предисловие не выражает мнения Коперника. Получив книгу, Гизе написал Ретику возмущенную жалобу на «злоупотребление доверием и безбожность» печатника или какого-то завистника, который, не желая отказываться от своих старых понятий, решил подорвать авторитет книги. Чтобы это не осталось безнаказанным, Гизе предложил направить письмо, которое он прилагает, в нюрнбергский сенат и потребовать защиты для автора. Было ли это сделано, неизвестно, во всяком случае, книга уже была опубликована задолго до того, как Гизе выступил с этим предложением [Письмо Гизе впервые было напечатано в небольшом сборнике писем, вышедшем в Кракове в 1616 году, о существовании которого знали лишь немногие астрономы].
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Коперник (3)

Новое сообщение ZHAN » 17 янв 2019, 15:31

Судя по всему, широкая публика долго не знала, что автором странного предисловия был Озиандер, а не Коперник, хотя внимательный читатель мог бы заметить, что автор книги едва ли мог рассуждать в подобных выражениях. Кеплер узнал имя виновника от ученого коллеги из Нюрнберга и поместил его на очень видном месте – на обратной стороне титульного листа своей книги о Марсе, изданной в 1609 году; но, конечно, очень жаль, что Коперник до той поры в глазах многих людей представлялся человеком, который предложил сенсационную гипотезу, в то же время считая ее ложной [Защитить Коперника от этого обвинения, поддержанного также Реймерсом, Кеплера заставили слова французского математика Раме. Озиандеру приписывают и добавление слов orbium caelestium («небесных сфер») к названию De revolutionibus («О вращении»), принятому Коперником. Следует, однако, сказать, что эти два слова не вызывают возражений, так как Коперник неоднократно использует их в посвящении и в первой книге].

Теперь, когда мы попытались проследить развитие новой системы и влияния, под которыми она обрела форму в сознании своего творца, рассмотрим ее более подробно.

Трактат разделен на шесть книг. Первая содержит общий обзор новой системы и заканчивается двумя главами о плоских и сферических треугольниках. Вторая книга посвящена астрономии сфер. Третья рассматривает прецессию равноденствий и движение Солнца (вернее, Земли), четвертая – теорию движения Луны; пятая – движения планет по долготе; а шестая – их движения по широте.

В начале первой книги говорится, что мир имеет форму шара, наиболее совершенную из всех и обладающую наибольшей вместительностью, к которой стремятся все предметы, как можно видеть по водяным каплям и другим жидким телам. Затем доказывается, что Земля имеет ту же форму и что суша и вода образуют единый шар. Далее утверждается, что движение небесных тел равномерное и круговое или составлено из круговых движений, так как только круг возвращает тело в исходное положение, в то время как действительная неравномерность движения может быть вызвана непостоянством движущей силы или вследствие изменения тела после оборота, но и то и другое предположение абсурдно. Затем рассматривается вопрос о месте Земли и свойственно ли ей круговое движение. Большинство авторов, говорит Коперник, согласно с тем, что Земля покоится в середине мира, и сочло бы противоположное мнение нелепым. Однако если разобрать дело внимательнее, то окажется, что этот вопрос еще окончательно не решен, так как любое наблюдаемое изменение может происходить либо вследствие движения наблюдаемого объекта или наблюдателя, либо вследствие неодинаковости перемещений того и другого, так что, если бы Земля совершала движение, из-за этого все вне Земли представлялось бы движущимся в противоположную сторону; вращение Земли с запада на восток таким образом объяснило бы восход и закат солнца, луны и звезд, как о том учили уже некоторые из древних. И если кто-нибудь стал бы утверждать, что Земля находится не в центре мира, хотя ее расстояние до центра не так уж велико по сравнению с расстоянием до звездной сферы, но все же достаточно, чтобы быть сопоставимым с орбитами планет, то, пожалуй, он бы смог найти истинную причину неравномерности видимого движения в том, что движения происходят относительно центра, находящегося за пределами Земли.

Поколебав таким образом веру читателя в освященные древностью воззрения, Коперник показывает, что, хотя Землю следует рассматривать всего лишь как точку по сравнению с неизмеримой величиной звездной сферы, отсюда никоим образом не следует, что Земля покоится в центре сферы; и весьма неразумно предполагать, что такая громада мира поворачивается за двадцать четыре часа. Ведь так как Земля является реально существующим телом, она должна вращаться вместе со всем остальным миром и за то же самое время, но в таком случае на Земле в одном месте всегда был бы полдень, а в другом – всегда полночь, и не было бы ни восходов, ни закатов. Эта проблема решается, если мы подумаем о том, что тела, описывающие меньшие окружности, всегда движутся быстрее, чем те, которые описывают более крупные; Сатурн, самая дальняя из планет, совершает свой путь за тридцать лет, а Луна, без сомнения ближайшая к Земле, за месяц, таким образом, следует признать, что Земля делает полный оборот за сутки. Затем он излагает доводы древних против этого вращения: Аристотель говорит, что четырем элементам свойственны лишь прямолинейные движения вверх или вниз, а небесным телам – круговые движения; Птолемей утверждает, что вращение в двадцать четыре часа было бы настолько стремительным, что распавшаяся Земля давно бы уже была разбросана по небу, в то время как падающие тела никогда не достигали бы назначенного им места, которое ускользало бы от них, а облака и другие висящие в воздухе тела всегда двигались бы на запад. На это Коперник замечает, что Птолемею следовало бы больше бояться того, что распадется сама громада небесной сферы; а насчет облаков достаточно лишь допустить, что не только суша и вода, но и значительная часть воздуха вращается, будь то по причине того, что нижние слои пропитаны земной и водной материей и имеют ту же природу, что и Земля, или что прилегающая Земля своим вращением сообщает воздуху приобретенное движение. Указывалось, что высшая область воздуха следует движению неба, что подтверждается внезапно появляющимися светилами, которые у греков называются кометами или бородатыми звездами и которые, как считается, возникают в этой высшей области, восходят и заходят подобно звездам. На это можно только ответить, что эта часть воздуха вследствие ее большой удаленности остается не затронутой упомянутым движением Земли. Опускающиеся и поднимающиеся тела обладают двойным движением по отношению к миру: прямолинейным и круговым; и до тех пор, пока тело пребывает в своем природном месте, оно совершает только второе (круговое) и представляется покоящимся, в то время как прямолинейное движение бывает только у тел, которые по той или иной причине выведены из своего природного места.

В девятой главе Коперник рассуждает, находится ли Земля в центре мира и является ли она планетой. То, что она не является центром всех круговращений, доказывается неравномерным видимым движением планет и переменностью их расстояний от Земли. Так как, следовательно, должны существовать несколько центров, не может быть никаких сомнений относительно того, совпадает ли центр мира или другой центр с центром земного притяжения. «Что касается меня, то я полагаю, что тяготение есть не что иное, как некоторое природное стремление, сообщенное частям Божественным провидением творца Вселенной, чтобы они стремились к целостности и единству, сходясь в форму шара. Вполне вероятно, что это свойство присуще также Солнцу, Луне и остальным блуждающим светилам, чтобы при его действии они продолжали пребывать в своей шарообразной форме, совершая тем не менее различные круговые движения». Коперник, очевидно, имеет в виду, что одни и те же условия действуют на небесные тела и на Землю: все, что находится «вне своего природного места», должно двигаться по прямой линии, тяжелые элементы (земля и вода) вниз, легкие (воздух и огонь) вверх, то есть от центра [От этого древнего понятия, хотя здесь оно распространено и на планеты, лежит еще далекий путь до идеи всемирного тяготения].

Эта идея, по-видимому, изложена здесь для того, чтобы показать, что, раз между Землей и планетами существует сходство, разумно предположить, что Земля, как и планеты, обладает орбитальным движением. Во всяком случае, сразу же после этого отмечается (как мы уже говорили), что если Земля, помимо суточного вращения, обладает и другими движениями, то мы должны обнаруживать их в движениях планет, в первую очередь в годовом пути Солнца и, при переносе солнечного движения в земное, в стояниях и попятных движениях пяти планет, которые представляют собой не действительные, а только кажущиеся явления, вызванные движением Земли, и, наконец, считать само Солнце занимающим центр мира.

После предварительных рассуждений Коперник в десятой главе переходит к установлению порядка планетных орбит. До той поры существовало полное единодушие относительно того, что Луна, совершающая полный оборот за самый короткий срок, находится ближе всего к Земле; что Сатурн, имеющий самый длинный период, находится дальше всего; а орбиты Юпитера и Марса проходят в пределах орбиты Сатурна. Однако с Меркурием и Венерой дело обстояло по-другому:

Платон помещал их выше Солнца, Птолемей и большинство последующих астрономов – ниже Солнца, в то время как Аль-Битруджи помещал Венеру выше, а Меркурий – ниже Солнца. Приверженцы Платона думают, что так как планеты являются темными телами, освещаемыми Солнцем, то если бы эти две планеты находились ниже Солнца, они должны были бы казаться нам полукруглыми или по крайней мере не идеально круглыми, а Солнце должно было бы время от времени частично затмеваться ими во время их прохождения между Землей и Солнцем. С другой стороны, те, кто помещает Венеру и Меркурий ниже Солнца, аргументируют свое мнение, указывая на величину промежутка между Солнцем и Луной. Установлено, что наибольшее расстояние Луны от Земли в 641/6 раза больше полудиаметра Земли, а наименьшее расстояние до Солнца – в 1160 раз; чтобы заполнить обширный промежуток между их орбитами, утверждается, что наименьшее расстояние до Меркурия следует после наибольшего расстояния до Луны, а наименьшее расстояние до Венеры следует после наибольшего до Меркурия, и наименьшее расстояние до Солнца как бы касается наибольшего расстояния до Венеры. Ибо эти люди полагают, что расстояние между апсидами Меркурия равно 177 полудиаметрам Земли, а остальное пространство почти заполнено орбитой Венеры протяженностью 910 полудиаметров. Они также утверждают, что в светилах нет никакой непрозрачности, подобной лунной, но что они или сияют собственным светом или всем телом насыщены солнечным светом и поэтому не затмевают Солнце, даже если в чрезвычайно редких случаях имеют настолько малые широты, что проходят через диск Солнца, поскольку они настолько малы по сравнению с Солнцем, что Венера (которая больше Меркурия) едва закрывает сотую часть Солнца. Поэтому они приходят к выводу, что эти две планеты движутся ниже солнечной орбиты. Однако насколько малодостоверны эти выводы, можно видеть из того, что, если следовать Птолемею, наименьшее расстояние до Луны равно 38 полудиаметрам Земли, а по более правильной оценке 52 [В рукописи Коперника указано 49; в печатном издании – 52, и это значение верное, так как лунная теория Коперника дает значение 5217/60], но мы до сих пор не знаем, есть ли что-то в этом огромном пространстве, кроме воздуха, или, если угодно, так называемого огненного элемента. Кроме того, наибольшее удаление Венеры от Солнца составляет 45°, значит, диаметр ее орбиты должен быть в шесть раз больше наименьшего расстояния до Венеры от Земли; так что же заполняет это большое пространство и огромный эпицикл Венеры?

Доводы Птолемея о том, что солнечная орбита находится как раз посередине между орбитами тех планет, которые могут сколь угодно удаляться в любую сторону, и тех, которые лишь немного удаляются от Солнца, опровергаются тем, что Луна может отходить от него сколь угодно далеко. И какую причину могут привести те, кто помещает Венеру и Меркурий ниже Солнца, почему эти две планеты не совершают самостоятельных и отдельных от Солнца обращений, как другие планеты, если только отношение их быстроты и медленности не представляет порядок их орбит в ложном свете? Поэтому либо Земля не является центром, либо у нас нет никаких оснований для принятого порядка светил, как и для того, чтобы именно Сатурну отводили самое высокое место, а не какой-либо другой планете.

«Поэтому я полагаю, – продолжает Коперник, – что никак не следует пренебрегать тем, что написал в энциклопедии Марциан Капелла и что хорошо знали некоторые другие латинские писатели. Они полагают, что Венера и Меркурий обращаются вокруг находящегося в середине Солнца, и по этой причине думают, что эти планеты могут отойти от Солнца не дальше, чем позволяет кривизна их орбит, поэтому эти светила не обходят вокруг Земли, как другие планеты, но имеют повернутые вовнутрь апсиды. Следовательно, что же другое хотят сказать эти писатели, как не то, что центр орбит этих светил находится около Солнца. Таким образом, орбита Меркурия помещается внутри орбиты Венеры, более чем вдвое большей, и находит по величине вполне соответствующее место. Если теперь кто-нибудь на этом основании отнесет к тому же центру и Сатурн с Юпитером и Марсом, определив только величину их орбит так, чтобы они вместе с этими планетами охватывали и окружали неподвижную Землю, то не ошибется, как показывают числовые отношения их движений. Действительно, известно, что эти планеты находятся ближе к Земле всегда около времени своих восходов вечером (то есть когда они бывают в противостоянии с Солнцем, а Земля занимает место между ними и Солнцем), а всего дальше они бывают от Земли около времени своих заходов вечером, когда скрываются вблизи Солнца, и Солнце, очевидно, бывает между ними и Землей. Все это достаточно ясно показывает, что центр их скорее относится к Солнцу и будет тем же самым, вокруг которого совершают свои обращения Венера и Меркурий. Если же они все связаны с одним центром, то необходимо, чтобы в пространстве, остающемся между выпуклостью сферы Венеры и выгнутостью Марса, находился тоже круг или гомоцентрическая с ними по своим обеим поверхностям сфера, которая вместила бы в себя Землю вместе с сопутствующей ей Луной и всем тем, что содержится под сферой Луны. Действительно, мы никак не можем отделить от Земли Луну, бесспорно самую близкую к ней, в особенности если в указанном пространстве найдем достаточно обширное и подходящее для нее место. Поэтому нам не стыдно признать, что весь этот подлунный мир и центр Земли движутся по упомянутому Великому кругу между другими планетами, заканчивая свое обращение вокруг Солнца в один год, и что около Солнца находится центр мира. Если же Солнце остается неподвижным, то все видимое движение его должно скорее найти себе объяснение в подвижности Земли. Величина же мира является столь большой, что, хотя расстояние Земли от Солнца и имеет достаточно заметную величину по отношению к размерам любых планетных орбит, оно по сравнению со сферой неподвижных звезд не будет заметным. Я полагаю, что это допустить легче, чем устремлять свой ум в почти бесконечное множество сфер, а ведь это принуждены делать те, которые удерживают Землю в середине мира. Но должно скорее следовать мудрости природы, которая как бы больше всего боится произвести что-нибудь излишнее или бесполезное, но зато часто одну вещь обогащает многими действиями. Хотя все это и очень трудно и даже почти что невозможно помыслить, однако, вопреки мнению многих, если Бог позволит, мы сделаем это яснее Солнца для людей, по крайней мере не невежд в математическом искусстве. Поэтому если сохранить указанный ранее принцип (ибо никто не приведет более удобного), что размеры орбит измеряются величиной времени обращения, то порядок сфер, начиная с наивысшей, будет следующий. Первой и наивысшей из всех является сфера неподвижных звезд, содержащая самое себя и всё и поэтому недвижная; она служит местом Вселенной, к которому относятся все движения и положения всех остальных светил. Действительно, хотя некоторые полагают, что она каким-то образом движется [Речь идет конечно же о прецессии], мы для этого явления приведем другую причину, выводимую из земного движения. Далее следует первая из планет – Сатурн, завершающий свое обращение в 30 лет, после него – Юпитер, движущийся двенадцатилетним обращением, затем – Марс, который делает круг в два года. Четвертое по порядку место занимает годовое вращение, и в этом пространстве, как мы сказали, содержится Земля с лунной орбитой, как бы эпициклом. На пятом месте стоит Венера, возвращающаяся на девятый месяц. Наконец, шестое место занимает Меркурий, делающий круг в восемьдесят дней. В середине всего находится Солнце. Действительно, в таком великолепнейшем храме кто мог бы поместить этот светильник в другом и лучшем месте, как не в том, откуда он может одновременно все освещать. Ведь не напрасно некоторые называют Солнце светильником мира, другие – умом его, а третьи – правителем. Гермес Трисмегист называет его видимым богом, а Софоклова Электра – всевидящим. Конечно, именно так Солнце, как бы восседая на царском троне, правит обходящей вокруг него семьей светил».
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Коперник (4)

Новое сообщение ZHAN » 18 янв 2019, 22:11

Коперник заканчивает главу, в которой ясно и просто изложил главные черты своей новой системы, коротким замечанием о том, что это гармоничное расположение объяснит неленивому наблюдателю, почему попятное движение у Юпитера больше, чем у Сатурна, и меньше, чем у Марса, и почему у Венеры оно больше, чем у Меркурия; а кроме того, почему внешние планеты ярче всего во время противостояний, так как причина всех этих явлений заключается в движении Земли. То, что ничего подобного не замечается у неподвижных звезд, только доказывает их неизмеримую удаленность, по сравнению с которой даже годовая орбита Земли кажется ничтожной. То, что между Сатурном и неподвижными звездами лежит огромное пространство, по его мнению, доказывает их мерцающий свет, которым неподвижные тела отличаются от движущихся.

Однако в глазах Коперника недостаточно было дать Земле двойное движение: суточное вращение за 24 часа и годовое обращение вокруг Солнца; он должен был еще объяснить тот факт, что ось Земли, несмотря на годовое движение, всегда указывает в одно и то же место на небесной сфере. Современному уму объяснить это очень просто: ось остается параллельной исходному положению, и, следовательно, она не наделена никаким отдельным движением [Помимо прецессионного, о чем будет сказано ниже].

Но древние не сочли бы это подходящим объяснением. Как мы видели выше, они утверждали, что Луна не вращается вокруг своей оси, поскольку всегда обращена одной и той же стороной к Земле (на что мы говорим, что это доказывает равенство ее периода вращения периоду обращения вокруг Земли), и точно так же они отсчитывали аномалию в эпицикле от точки на нем, которая оставалась наиболее отдаленной (апоцентр) от центра деферента, как если бы эпицикл был обручем с длинным стержнем, проходящим диаметрально через него, на котором он крутился бы вокруг центра деферента.

Следовательно, Коперник должен был ожидать, что ось Земли в течение года постоянно была бы направлена в точку намного выше Солнца, как если бы Земля была гирей гигантского конического маятника. Это заставило бы небесный полюс в течение года описывать окружность параллельно эклиптике, а так как он не делает ничего подобного, а остается неподвижным, то Копернику пришлось постулировать третье движение Земли, «деклинационное», как он его называет, причем ось Земли описывает поверхность конуса за год, двигаясь в противоположном направлении относительно движения центра Земли, то есть с востока на запад. Таким образом, ось продолжает указывать в ту же точку в пространстве. Но период не равен точно году, он немного меньше, и эта небольшая разница производит медленное обратное движение точек пересечения эклиптики и экватора – прецессию равноденствий. Наконец-то она была верно объяснена как медленное движение земной оси, а не как движение всей небесной сферы, и это почти примиряет нас с ненужным третьим движением Земли, которое, разумеется, сыграло свою роль в непопулярности, с которой системе Коперника пришлось долго бороться, ведь признать у Земли одно движение – это уже не сахар, но три!

Небольшая разница между периодами орбитального и осевого движения Земли могла бы объяснить устойчивое обратное смещение равноденствий. Но, к сожалению, Коперник разделяет старую ошибку – веру в нерегулярное движение равноденствий, поскольку он не задумался о том, что ошибки наблюдения вполне могут объяснить различия между значениями постоянной прецессии, полученными в результате наблюдений, которые производились в древности и в Средние века. Он заключил, что прецессия за 400 лет до Птолемея была медленнее, чем в период между Птолемеем и Аль-Баттани, а в этот период быстрее, чем после Аль-Баттани. Он также считал, что наклон эклиптики проявляет признаки нерегулярного изменения, и поэтому разработал гипотезу, чтобы объяснить эти (воображаемые) явления. Он допускает два движения земной оси под прямым углом друг к другу, которые называет либрациями, потому что они, подобно движению маятника, быстрее всего в середине; одно из них перемещает полюсы по линии, проходящей через полюсы эклиптики, из-за чего наклон изменяется в пределах от 23°52′ и 23°28′ в течение 3434 лет, а другое – под прямым углом к первому, в результате чего величина прецессии варьируется в течение 1717 лет. Их комбинированное действие заставляет полюс Земли двигаться по окружности двух малых кругов с радиусами 6′ через fkilgminf; причем е — полюс эклиптики, a ei — среднее наклонение. Однако это геометрическое представление предназначено только для того, чтобы дать приблизительную картину явлений, так как оно не может в то же время дать значений вариаций наклонения и прецессии, которые удовлетворяют данным положенных в основу наблюдений. Равноденствие на самом деле колеблется в пределах до 70′ в обе стороны от среднего положения, в то время как годовая прецессия меняется в пределах 50,2015″ ± 15,3695″. Чтобы избежать неравенства, Коперник всегда отсчитывает долготу от у Овна, а не от равноденствия.
Изображение

Будучи вынужден в данном случае отказаться от обычного принципа кругового движения, Коперник считает необходимым доказать, что прямолинейное движение можно получить путем сочетания двух круговых, как, например, когда круг катится по внутренней стороне окружности другого круга с радиусом в два раза больше, и в таком случае точка на окружности меньшего круга будет описывать диаметр большего. Мы уже видели, что Насир ад-Дин ат-Туси знал эту теорему и использовал ее в своей планетной теории. В рукописи Коперник добавил, но затем снова вычеркнул следующее предложение: «При этом нужно заметить, что если при прочих одинаковых условиях круги hg и cf не будут равны, то точка h опишет не прямую линию, а коническое или цилиндрическое сечение, которое математики называют эллипсом; но об этом в другом месте». Он, наверное, заметил, что в целом это будет только гипоциклоида, похожая на эллипс, и потому вычеркнул это предложение. И все же любопытно, что Коперник осознавал, что сочетание круговых движений производит скорее другие кривые, чем круги и прямые линии.

Придав годовую орбиту Солнцу и позволив ей объяснить «вторые неравенства», Коперник заложил основу системы гораздо более простой, чем система птолемеевская. Но, к сожалению, он был вынужден омрачить простоту своего труда, потому что гелиоцентрическая система сама по себе не могла объяснить разные скорости планет на орбитах – «первые неравенства». У него не было никакого способа обойтись без эксцентров и эпициклов. Как и в главе о системе Птолемея, мы кратко опишем использованные им геометрические построения.

Что касается движения Земли вокруг Солнца, то Коперник, конечно, не мог добавить ничего существенного к эксцентрическому кругу (или концентрическому кругу с эпициклом), к которому прибегнул Птолемей для движения Солнца. Он определил эксцентриситет орбиты = 0,0323 и долготу апогея = 96°40′. Здесь он опять не учел неточность греческих и арабских наблюдений. Он обнаружил, что эксцентриситет уменьшился, а долгота апогея увеличилась, но он полагал, что эти изменения не были регулярными. Хотя он признал, что определенный Аз-Заркали апогей должен быть ошибочным [Он знал это из «Краткого изложения» Региомонтана], ему не пришло в голову усомниться в том, что между временами Гиппарха и Птолемея не было никаких изменений, как и в том, что с тех пор скорость смещения апогея еще увеличилась.
Изображение

Поэтому Коперник счел необходимым предположить следующее движение линии апсид. Солнце, центр мира, находится в точке S, вокруг него точка А движется по кругу с запада на восток примерно за 53 000 лет [Это следует из среднего годового движения, равного 24″20″′ 14″″], в то время как точка В, центр орбиты Земли, движется вокруг А по небольшому кругу в противоположном направлении за 3434 года, за тот же период, что и период изменения наклона. Если радиус земной орбиты ВТ = 1, то SA = 0,0368 и АВ = 0,0047. Когда В находится в точке 1 на малом круге, эксцентриситет максимален, это имело место около 64 года до н. э.; в точке 3 (которую В должна была достичь примерно через сто лет после Коперника) эксцентриситет достигнет своего минимума и апогей будет двигаться быстрее всего.

Ретик в своем Narratio prima добавляет любопытный астрологический комментарий к описанию этого движения апогея. Когда центр орбиты Земли находился в точке 1 и эксцентриситет был максимальный, Римская республика склонялась к империи, а по мере уменьшения эксцентриситета Римская империя приходила в упадок и наконец погибла. Когда эксцентриситет достиг среднего значения в 2, возник ислам и появилась еще одна великая империя, которая продолжала расти; но когда эксцентриситет достигнет своего минимума в XVII веке, эта империя, Бог даст, вскорости рухнет. Когда эксцентриситет снова достигнет среднего значения (4), можно ожидать второго пришествия Христа, так как центр орбиты Земли был в том же месте при сотворении мира; и эти расчеты не сильно отличаются от слов Элиягу о том, что мир будет существовать шесть тысяч лет, в течение которых произойдет около двух оборотов этого колеса фортуны. Интересно было бы узнать, какие важные события произошли во время прохождения критических точек в первом обороте. Сам Коперник ничего не говорит об этой теории империй, но можно не сомневаться в том, что Ретик не вставил бы ее в свою работу, если бы не услышал ее из уст D. Doctor Ргаесерtor, как он всегда называет Коперника [Ротман, решительный приверженец Коперника, в письме к Тихо Браге, написанном в 1587 году, приписывает эту идею Ретику и спрашивает, какое отношение эксцентриситет Солнца может иметь к судьбе империй].

Движение Луны Коперник представляет при помощи гораздо более простых конструкций, чем у Птолемея. Уравнение центра он объясняет эпициклом, но для второго неравенства он отвергает эксцентрический деферент и вместо этого использует второй эпицикл. Таким образом, центр деферента находится в d в центре Земли, а на его окружности центр первого эпицикла движется с запада на восток вместе со средним сидерическим движением Луны. Центр второго эпицикла движется на окружности первого в противоположном направлении со средним аномалистическим движением (13°3′53″56,5″′ в день, считая в античной манере от апогея а), в то время как Луна движется на втором эпицикле с запада на восток, дважды в каждую лунацию, находясь в е в каждой средней сизигии и в/в каждой средней квадратуре. Такое построение позволяет избежать огромного изменения параллакса, вытекающего из построений Птолемея. Коперник сохранил античное значение суммы двух неравенств 7°40′ и таким образом определил радиус первого эпицикла cb = 0,1097, а второго ае = 0,0237. Наибольшее расстояние Луны он установил как 68⅓, наименьшее – 5217/60 полудиаметров Земли, оба имеющие место в квадратуре.
Изображение

Ввиду этого видимый диаметр Луны колеблется между 28′45″ и 37′34″, что является значительным улучшением (как замечает Коперник) теории Птолемея, согласно которой видимый диаметр должен достигать почти градуса в перигее.
Изображение

В планетных теориях у Коперника было большое преимущество перед Птолемеем, а именно в том, что (в отношении движения по долготе) ему пришлось иметь дело только с первым неравенством, период которого равен сидерическому периоду обращения. Это Птолемей объясняет эксцентрическим кругом и эквантом или кругом равномерного углового движения, причем центр деферента или круга равных расстояний находится на полпути между Землей и центром экванта. Коперник мог бы взять эту схему, но он полагал, что принцип равномерного кругового движения нарушается введением экванта, и потому должен был найти другое объяснение. Для внешних планет это было сравнительно легко. На рисунке d является центром орбиты Земли, относительно которой как представляющей среднее движение Солнца (то есть Земли) Коперник всегда рассматривал движения планет. Центр эксцентрической орбиты планеты находится в точке с, в то время как планета движется вокруг эпицикла в ту же сторону и с той же угловой скоростью, с которой ее центр движется вокруг эксцентра. Радиус ае эпицикла составляет одну треть от эксцентриситета cd деферента, фактически cd + ае = эксцентриситету экванта у Птолемея, так что, вместо того чтобы разделить эксцентриситет надвое, как сделал Птолемей, Коперник отдал ¾ его деференту, а все остальное учел с помощью эпицикла, но результат остался прежним. Планета находится в f, когда центр эпицикла находится в точке а, в i, когда центр находится в g, и так далее; и, как указывает Коперник, планета не будет описывать окружность, так как i находится вне окружности, проходящей через f и l [Чтобы получить эксцентрический круг, движение эпицикла должно быть попятным].

Вместо эксцентрического круга можно было ввести круг с равным радиусом, но центром в d [Об этом говорится в «Малом комментарии»]. В таком случае на нем должен был перемещаться эпицикл с радиусом cd и прямым движением, на другом – эпицикл с радиусом ⅓ cd в тот же период, но с попятным движением, на котором, наконец, планета будет двигаться по прямой с удвоенной скоростью, так что всякий раз, когда центр меньшего эпицикла находится в апсидах большего, планета находится в перигелии меньшего. Этот эпицикл эпицикла (epicycli epicyclium) будет производить то же действие, что и эпицикл эксцентра (есcentrepicyclum), описанный выше, но Коперник предпочел последний вариант как более простой.

В системе Коперника птолемеевские эпициклы Венеры и Меркурия стали орбитами двух планет, обращающихся вокруг Солнца. Но максимальные элонгации этих планет не всегда одинаково велики, каковой факт отчасти обусловлен эксцентриситетом их орбит, отчасти эксцентриситетом земной орбиты. В случае Венеры это явление довольно простое, так как ее собственная орбита имеет очень малый эксцентриситет; и потому Коперник ввел подвижный эксцентр в манере Аполлония, то есть позволил центру орбиты Венеры двигаться вокруг среднего центра ее орбиты по малому кругу со скоростью вдвое больше угловой скорости Земли и в том же направлении. Всякий раз, когда Земля проходит линию, произведенную апсидами Венеры, в точках а и b, центр эксцентра находится в точке m малого круга, ближайшей к среднему Солнцу, а радиус малого круга составляет одну треть от среднего эксцентриситета, dn = ½ cd.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Коперник (5)

Новое сообщение ZHAN » 19 янв 2019, 23:40

Изображение

Но по причине очень большого эксцентриситета орбиты Меркурия (⅕, или более чем вдвое больше, чем у Марса) для него эта теория оказалась недостаточна. Центр малого круга теперь находится в n, когда Земля находится в а или b, и планета движется не на эксцентре, а назад и вперед по линии kl (диаметр малого эпицикла), которая всегда направлена к центру эксцентра, так что Меркурий находится в k каждые шесть месяцев, когда Земля находится в а или b, а центр эксцентра – в n, и в l, когда средняя гелиоцентрическая долгота Земли отличается на 90° от долготы апсид Меркурия, в то время как i обходит эксцентр за 88 дней. «Отсюда следует, что Меркурий в своем собственном движении не будет описывать всегда одну и ту же окружность круга, но очень сильно отличающиеся в зависимости от расстояния от центра орбиты, а именно наименьшую при нахождении в точке k, наибольшую в l и среднюю в i [Наибольшая 0,3953, наименьшая 0,3573, средняя 0,3763 (са = 1), dn = 0,0212, cd = 0,0736], приблизительно так же, как можно заметить у лунного эпицикла на эпицикле. Но то движение, которое Луна имеет по окружности, Меркурий совершает взад и вперед по диаметру, однако и это движение складывается из равномерных; как это происходит, мы показали, говоря о предварении равноденствий». Коперник не дает никаких объяснений тому, почему он отклоняется от кругового движения в данном конкретном случае.

Мы уже говорили, что Коперник не вел систематических наблюдений, но считал, что нескольких наблюдаемых положений для каждой планеты достаточно для определения элементов ее орбиты. Он определил эксцентриситет и долготу апогеев трех внешних планет по трем противостояниям, наблюдавшимся Птолемеем, а также по трем другим, которые наблюдал сам, и пришел к интересному открытию, что все долготы апогеев увеличились гораздо больше, чем можно было бы объяснить прецессией; и хотя он сильно преувеличил фактическую величину движения линий апсид, все же мы не можем отказать ему в чести этого открытия [Коперник определил апогеи, а не афелии планет, так как у него линии апсид проходят через центр земной орбиты, а не через Солнце. Он нашел следующие вариации: для Сатурна 1° за 100 лет, для Юпитера 1° за 300 лет, для Марса 1° за 130 лет].

После нахождения этих двух элементов орбиты ему осталась простая задача определить отношение полудиаметра деферента каждой планеты к полудиаметру орбиты Земли по одному наблюдаемому положению планеты за пределами противостояния. Придав таким образом относительные размеры всей системе, Коперник добился большого преимущества над Птолемеем, так как никакая геоцентрическая система не может дать ни малейшего представления о расстояниях планет, хотя, как мы уже видели, фактические расстояния (относительно расстояния до Солнца) в действительности все вместе скрыты в соотношениях радиуса деферента к радиусу эпицикла, найденных Птолемеем. Расстояния до внутренних планет от Солнца, радиусы их эпициклов, по Птолемею, легко найти из наблюдений наибольшей элонгации, а вот Копернику приходилось полагаться исключительно на наблюдения, зафиксированные Птолемеем. Он приводит лишь одно наблюдение Венеры, сделанное им самим (покрытие Луны в 1529 г.), и ни одного наблюдения Меркурия, который, по его словам, доставил ему немало затруднений, потому что Меркурий редко виден из-за испарений Вислы [Ему следовало бы сказать «из-за испарений Frische Haff» (ныне Калининградского залива), но, видимо, он подумал, что за границами Пруссии никто не знает названия этого залива. Однако он не говорит, что никогда не видел Меркурия].

Но все же ему удалось добыть три наблюдения Меркурия, одно сделанное Бернгардом Вальтером и два – Иоганном Шенером, и в случае этой планеты он также нашел прямое движение линии апсид [Он заключает, что оно составляет 1° за 63 года, примерно в десять раз больше фактического].

Далее мы приводим средние расстояния до планет от Солнца, найденные Коперником: они почти идентичны тем, которые получаются исходя из определений Птолемея.
Изображение

Что касается расстояния от Земли до Солнца, то Копернику пришлось принять значение солнечного параллакса, данное Гиппархом, сделав только мелкую поправку на значения видимых диаметров Солнца и Луны. Он заключает, что средний параллакс равен 3′1″, а среднее расстояние равно 1142 полудиаметра Земли.

В своей шестой книге, самой короткой из всех, Коперник касается широты планет, и в этой части своего труда он держится ближе всего к Птолемею, а также в ней сильнее всего ощущается нехватка точных наблюдений и мешает ему избавиться от ненужных осложнений. Орбиты трех внешних планет наклонены к плоскости эклиптики, но угол наклона не постоянен, а слегка варьируется в синодический период, будучи наибольшим, когда планета находится в противостоянии, и наименьшим, когда она находится в соединении. Средние значения наклона и пределы их изменения таковы:
Изображение

Теория Меркурия и Венеры точно так же сложна, как у Птолемея. Для каждой из этих планет линия узлов падает на линию апсид, и поэтому наблюдаются наибольшие широты, когда планета находится в 90° от апогея; но они подвержены двум видам колебаний, или «либраций». У первой период составляет полгода, так что всякий раз, когда среднее положение Солнца проходит через перигей или апогей планеты, наклон является наибольшим. Вторая либрация отличается от первой тем, что совершается относительно движущейся оси, причем планета всегда проходит через нее, когда Земля находится в 90° от апсид; но когда апогей или перигей планеты повернут к Земле, Венера всегда максимально отклоняется к северу, а Меркурий – к югу. Предположим, например, что среднее положение Солнца приходится на апогей Венеры и планета находится в том же самом месте, тогда при простом наклоне в первом колебании планета не имела бы никакой широты, но второе колебание, у которого ось пересекает под прямыми углами линию апсид, производит наибольшее отклонение. Но если Венера в этот момент находилась бы в 90° от апсид, то ось этого колебания совпала бы с линией среднего положения Солнца, и Венера добавила бы к северной «рефлексии» наибольшую «девиацию» или отняла бы от южной ту же величину. Пусть abcd будет орбитой Земли, а flgk – эксцентрической орбитой Венеры или Меркурия в ее среднем наклоне к первой, а fg – линией узлов. Когда и Земля, и планета находятся на прямой линии ac, планета не имеет широты, но некоторая широта будет получаться по бокам на полуокружностях gkj и flg, и эту широту планеты одни называют обликвацией, а другие – рефлексией. Но когда Земля находится в точке b или d, то такие же широты в gkj или flg, и они называются деклинациями, и «они скорее по названию, а не по существу отличаются от первых». Но так как угол наклона при обликвации оказывается больше, чем при деклинации, то полагают, что это вызывается неким колебанием около fg как оси. Далее Коперник допускает еще один «круг для девиации», наклонный к gkfl, концентрический с эксцентром для Венеры и эксцентрический для Меркурия.
Изображение

Их линия пересечения rs является движущейся осью этого колебания. Когда Земля находится в а или b, планета достигает крайнего предела девиации в точке t, а когда Земля отходит от а, планета в то же время отходит от t с той же скоростью, причем наклон круга девиации уменьшается и, когда Земля достигает b, планета достигает узла r этой широты. Но в этот момент две плоскости совпадут и разойдутся в разные стороны, так что остальной полукруг девиации, который ранее был южным, теперь будет северным, и Венера, которая до того находилась в северной широте, возвратится туда же и в этом колебании никогда не пойдет к югу. Точно так же Меркурий будет отклоняться только на юг. Для обеих планет период составляет 1 год.

Ниже мы приводим числовые данные, принятые Коперником:
Изображение

Коперник, как будто подумав, что, может быть, слишком близко придерживается Птолемея, дает и другое объяснение отклонения, допуская, что центр планетной орбиты лежит вне плоскости орбиты Земли, всегда с одной и той же стороны от нее, но на расстоянии, меняющемся в течение года.

В целом эта теория широты была лишь небольшой модификацией теории Птолемея. Вполне естественно, что Птолемей должен был испытывать большие трудности с представлением широт, ведь ему пришлось проводить линию узлов через Землю, а не через Солнце. Но Коперник тоже допустил ошибку, хотя и в меньшей степени, позволив ей пройти через центр земной орбиты. Это сместило узлы, так что у планеты оказалась некоторая широта, хотя ее не должно было быть вообще (или она должна была быть в эклиптике), и величина этой широты менялась в зависимости от положения Земли на ее орбите. По той же причине наибольшая северная широта планеты оказывалась отличной от ее наибольшей южной широты, и разница между ними также как будто изменялась в зависимости от положения Земли. Неудивительно, что ему пришлось допустить колебания орбит.

На теории широт заканчивается бессмертный труд «О вращении небесных сфер». Совершенно независимо от дерзкой теории движения Земли, которую даже его противники (по крайней мере те из них, чье мнение хоть чего-то стоит) признавали достойной великого ума, книга сразу же вознесла ее автора на одну высоту с Гиппархом и Птолемеем. Впервые с опубликования «Синтаксиса» астроном произвел на свет труд, который занял место этого испытанного временем памятника греческой науки. Это был не просто комментарий к «Альмагесту», не просто очерк соперничающей теории планет, как у Аль-Битруджи и Фракасторо; эта новая книга представляла собой полный пересмотр всего содержания работы Птолемея и дала новые теории и новые таблицы движения планет, которые практически не зависели от учения о движении Земли и могли применяться даже теми, кто выступал категорически против этого учения. Основные элементы планетных орбит были заново определены, и, хотя это было сделано на основе совершенно недостаточного количества новых наблюдений, в то время этого недостатка, по-видимому, никто не заметил.

Другой и более серьезный изъян, отчасти вызванный нехваткой новых наблюдений, отчасти чрезмерным доверием к точности наблюдений Птолемея, заключался в том, что Коперник во многих случаях держался слишком близко к своему великому предшественнику. Человек, свергнувший Землю с ее величественного положения центра Вселенной и распознавший, что она всего лишь одна из планет, все же был вынужден уделить ей исключительное положение в своей новой системе. Хотя Коперник и сказал, что «в середине всего стоит Солнце», в своих планетных теориях он исходил из того, что центром всех движений является центр земной орбиты, отличный от положения Солнца. А год, то есть период обращения Земли, был тесно связан с движением двух внутренних планет по долготе и по широте, и то же самое верно для движения внешних планет по широте, так что Земля оказалась почти столь же важным небесным телом в новой системе, как и в старой. Помимо того, движение Земли не особенно упростило старые теории, ибо, несмотря на исчезновение нежелательных эквантов, систему все еще переполняли вспомогательные круги. Однако это, по всей видимости, для Коперника не было недостатком, потому что свой «Малый комментарий» он завершает следующими словами: «Таким образом, Меркурий движется при помощи всего семи кругов, Венера – при помощи пяти, Земля – при помощи трех, а Луна вокруг нее – при помощи четырех; наконец, Марс, Юпитер и Сатурн – при помощи пяти кругов каждый. Таким образом, для Вселенной будет достаточно 34 кругов, при помощи которых можно объяснить весь механизм мира и всю хорею планет».

Кеплер был не так далек от истины, когда сказал, что Коперник не знал, насколько он богат, и больше стремился истолковать Птолемея, чем природу (хотя подошел ближе к этому, чем кто бы то ни было другой), поскольку не смог увидеть, насколько ненужными были эти вариации широты, и относил колебания к плоскостям эксцентров, следуя не движению этих эксцентров, a (quod monstri simile sit) движению Земли – тела, которое не имело к ним никакого отношения.

Коперник, однако, прекрасно сознавал, что он лишь положил начало реформе астрономии и что предстоит проделать огромную работу, прежде чем она будет завершена. Он сказал Ретику, что ликовал бы не меньше Пифагора, когда тот открыл свою теорему, если бы смог согласовать свою планетную теорию с наблюдаемыми положениями планет хотя бы в пределах 10′. Однако достигнутая им точность на самом деле была очень далека даже от этого скромного предела. Конечно, поскольку накапливалось все больше наблюдений, выявлявших ошибки в теории, он мог поставить эпицикл на эпицикл, чтобы разделаться с этими ошибками, ведь это все равно что выразить функцию рядом членов, включая синусы и косинусы углов, пропорционально времени, прошедшему с определенной эпохи, и именно это и делают астрономы до сих пор. Но фундаментальная ошибка Коперника состояла в том, что он принял центр земной орбиты в качестве центра всех движений, так как в теории Марса это может привести к весьма значительным ошибкам в геоцентрической долготе планеты [Кеплер показал, что, хотя это как максимум приведет к ошибке 5′ в гелиоцентрических долготах Марса, в геоцентрических долготах она может возрасти до 1°3′].

Но если Коперник и не создал того, что сегодня понимают под «системой Коперника», давайте не будем забывать о том, что он действительно сделал. Он не только показал, что гипотеза годового движения Земли вокруг Солнца может в очень простой форме объяснить самые вопиющие неравномерности движения планет, но и создал основанную на ней полную астрономическую систему, систему, способную к дальнейшему развитию, как только некий неутомимый наблюдатель осознал бы необходимость педантично перепроверить все небесные явления.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Тихо Браге и его современники

Новое сообщение ZHAN » 20 янв 2019, 21:26

Книга Коперника вышла из печати в 1543 году, а книга Кеплера о Марсе, показавшая, что планетные орбиты представляют собой эллипсы, увидела свет в 1609 году. В том же году телескоп был впервые направлен к небесным светилам и полностью перевернул существовавшие представления об их устройстве. Период с 1543 по 1609 год был переходным, так как Кеплер еще не очистил и не усилил систему Коперника; но в течение этого времени была проделана та работа, которая в итоге привела к его великим открытиям.

Книга «О вращении небесных сфер» сразу же заняла место достойного преемника птолемеевского «Альмагеста», который до той поры был альфой и омегой астрономов. Эразм Рейнгольд [Родился в 1511 году в Зальфельде, Тюрингия, был профессором в Виттенберге ком университете, умер в 1553 году. Он также автор ценного труда Griindlicher und warer Bericht vom Feldmessen, Зальфельд, 1574, опубликован его сыном], который уже в 1542 году приветствовал готовящийся к выходу трактат как открывающий новую эру, вскоре засел за составление новых таблиц небесных движений, которые должны были сменить устаревшие «Альфонсовы таблицы», и они вышли в 1551 году под названием Tabulae Prutenicae – «Прусские таблицы», названные так в честь герцога Альбрехта Прусского, покровителя автора.

Общая схема организации у них такая же, как у таблиц в книге Коперника, за исключением того, что интервалы меньше и сделана попытка добиться большей точности (значения указаны в секундах там, где у Коперника минуты), а константы заново определены исходя из приведенных Птолемеем и Коперником данных. Из-за крайней ограниченности недавних наблюдений таблицы оказались не намного лучше тех, на смену которым пришли; тем не менее они представляют собой шаг вперед, и лучших результатов просто невозможно было добиться, пока работы Браге и Кеплера не принесли свои плоды.

Рейнгольд не делает никаких заявлений о научных убеждениях и ни словом не намекает на то, считает ли он систему Коперника физически истинной или нет. И все же практическая демонстрация, которой он снабдил совершенство математической части книги «О вращении небесных сфер», несомненно в значительной степени способствовала распространению славы последней.

В Англии некий Джон Филд использовал таблицы уже в 1556 году для подготовки эфемерид на 1557 год «juxta Copernici et Reinholdi canones», «по канонам Коперника и Рейнгольда», в предисловии к которым автор говорит, что их составление опиралось на истинные, надежные и достоверные демонстрации. В послании, приложенном к тем же эфемеридам, Джон Ди, известный английский математик и астролог, объявляет о своей приверженности системе Коперника.

Пожалуй, раньше всего в Англии в пользу новой системы высказался автор нескольких книг по арифметике Роберт Рекорд в 1551 году в своей книге «Путь к знаниям», хотя и довольно осторожно, так как считал мир еще не вполне созревшим для подобного учения. В диалоге между Учителем и Учеником Учитель излагает причины, которые были у Птолемея, чтобы утверждать, что Земля «стоит посередине мира», но добавляет, что «Эраклид Понтийский, великий философ, и два великих ученика пифагорейской школы – Филолай и Экфант имели противоположное мнение, однако и Никита Сиракузский и Аристарх Самосский высказывали сильные доводы в пользу этого». Далее Учитель говорит, что вопрос слишком сложен и должен быть отложен до другого времени и затем что
«Коперник, великий ученый, многоопытный и чрезвычайно усердный в наблюдении, восстановил мнение Аристарха Самосского и подтвердил, что Земля не только совершает круговращение вокруг своего собственного центра, но даже постоянно находится вне центра на 38 сотен тысяч миль; но так как для понимания этого спора требуются более глубокие знания, чем можно высказать в данном введении, покамест я оставлю его до лучших времен».
В то время как Филд, по всей вероятности, всего лишь принял планетарные теории Коперника, Рекорд, судя по всему, был убежден в физической истинности движения Земли или по крайней мере считал его очень правдоподобным.

Другим английским математиком, разделявшим это мнение, был Томас Диггес, автор интересной книги Alae seu scalae mathematicae, «Математические крылья или лестницы», в которой речь идет в основном о новой звезде, вспыхнувшей в 1572 году [Диггес надеялся проверить систему Коперника, попытавшись установить годовой параллакс новой звезды, но не смог его найти]. В предисловии он говорит, что система Птолемея похожа на собранные из разных мест голову и конечности, а значит, его гипотеза не истинна [Коперник употребил эту метафору в посвящении папе], что и заставило Коперника прибегнуть к другой. Он добавляет, что явления остаются теми же самыми, предполагаем ли мы вращение звездной сферы или Земли. В заключительном абзаце он выражает сожаление по поводу того, что Коперник не дожил до нашего времени, ведь тогда мы могли бы приобрести исчерпывающие знания о небесной системе. В 1592 году Диггес опубликовал новое издание Prognostication everlasting, «Вечного предсказания», трактата по метеорологии, написанного его отцом Леонардом Диггесом. В приложении, которое добавил он сам, он упоминает систему Птолемея и замечает, что «в наш век один редкий ум… благодаря долгим изысканиям, тяжким усилиям и необычайной изобретательности произвел новую Теорию или Схему мироздания, показав, что Земля не покоится в центре мира…». Поскольку это приложение к тому же озаглавлено «Совершенное описание небесных сфер в соответствии с древней доктриной пифагорейцев, возрожденное Коперником и подкрепленное геометрическими демонстрациями», не может быть никаких сомнений в том, что Диггес был убежден в движении Земли, а не просто принял новую систему в качестве рабочей гипотезы.

В конце XVI века мы находим еще одного прославленного англичанина, который принимал учение о суточном вращении Земли как не вызывающее сомнений. Это Уильям Гильберт, автор эпохального труда De magnete, «О магните», опубликованного в Лондоне в 1600 году. Он досконально рассматривает «ежедневное магнитное вращение» земного шара, которое считает не просто вероятным, а бесспорным, так как природа всегда выбирает наименьшее, а не наибольшее количество средств, и так как гораздо более разумно допустить, что одно небольшое тело – Земля ежедневно совершает обращение, нежели что вся Вселенная крутится вокруг него. Нет никаких оснований предполагать существование сфер, без которых совершенно нелепо воображать себе звезды, с огромной скоростью несущиеся вокруг Земли в двадцать четыре часа; фактически не может быть никаких сомнений в том, что звезды, как и планеты, расположены на разных расстояниях от нас и что многие из них находятся так далеко, что недоступны глазу. Он относит суточное движение Земли за счет ее же магнитной энергии, однако не вдается в подробности; при этом он указывает, что орбита Луны содержит немногим больше, чем дважды 29½ большого круга Земли, а обращение Луны вокруг Солнца составляет немногим более 29½ дня, то есть между движениями Луны и Земли существует пропорция два к одному. Хотя Гильберт неоднократно обращается к учению Коперника, он не хочет вдаваться в вопрос орбитального движения, описанного в этой книге [Эдвард Райт, известный английский математик (умер в 1615 г.), написал предисловие к книге Гильберта, в котором говорит, что трудно придется тому, кто хочет принять суточное движение всех сфер (если сферы существуют), и считает весьма вероятным, что Земля вращается. Видимо, в годовое движение Земли он не верит], но в посмертно опубликованном труде, вышедшем уже после 1651 года, колеблется между системами Браге и Коперника.

Вопреки ожиданиям, в Германии те первые дни доктрина Коперника, по-видимому, не имела многочисленных сторонников. Среди принявших ее был Христиан Вурстейзен, или Урстизий, из Базеля (1544—1588), который, как говорит Галилей, читал о ней лекции в Италии [У Галилея в «Диалоге» одно из действующих лиц упоминает ее, и некоторые неверно поняли его в том смысле, что сам Галилей посещал эту лекцию]. Он ничего не писал об этом и в длинном комментарии к «Теории» Пурбаха даже не намекает на новую систему, а лишь пару раз упоминает Коперника, хотя в одном случае называет его «человеком поистине божественного гения, который в наш век не без успеха попытался возродить астрономию». Но книга, вероятно, писалась на заказ, и рассмотрение спорного вопроса в ней могло повредить продажам.

Михаэль Местлин (1550– 1631) тоже был приверженцем Коперника, и, будучи учителем Кеплера, он, вероятно, первым рассказал своему великому ученику о подробностях новой системы. Местлин надзирал за печатью первого труда Кеплера «Тайна мироздания» и по собственной воле добавил к нему новое – четвертое – издание Narratio prima Ретика. В предисловии к последнему Местлин утверждает, что порядок и величина всех планетных шаров в гипотезе Коперника таковы, что в ней нельзя ничего изменить или переставить, не создав путаницы во всей Вселенной, «quin etiam omnis dubitatio de situ et serie prout exclusa manet». Он даже обдумывал публикацию нового издания трактата Коперника и даже написал к нему предисловие, в котором решительно протестовал против осуждения системы Коперника святой конгрегацией, составившей индекс запрещенных книг, говоря, что никто не опроверг его астрономических или математических доводов и что это старая система Аристарха, которую Коперник надежно подтвердил и доказал помощью неоспоримых аргументов и геометрии [План Местлина не был выполнен].

И все-таки Местлин написал учебник во вполне привычном духе XV и XVI веков («Краткое изложение астрономии», Тюбинген, 1588 г.), в котором изложил только старые теории. Однако в старости, при публикации нового издания этой работы, он добавил к первой книге приложение, в конце которого говорит о вращении звездной сферы, что его непостижимая скорость, несомненно, была не последней причиной, а может быть, даже и первой, которая заставила Коперника задуматься о возможности других гипотез, о другом расположении сфер, более соответствующем разуму, природе и наблюдениям.

Еще одним немецким сторонником Коперника был Христоф Ротман из Гессен-Касселя, главный астроном ландграфа Вильгельма IV Гессенского. Он состоял в постоянной переписке с Тихо Браге, и они оба неоднократно обсуждали эту тему в своих письмах, причем Ротман весьма умело отстаивал свою позицию против аргументов Браге, то есть он должен был иметь очень сильную убежденность в истинности учения Коперника. Сам ничего по этому вопросу не опубликовал. Его современник Ориган, или Давид Тост, великий астролог и автор эфемерид, признавал суточное вращение Земли, которое он, судя по всему, связывал с магнитной силой, но в остальном придерживался геогелиоцентрической системы мира.

В Италии еще был жив дух гуманизма, и быстро приближалась эпоха, когда экспериментальной физике суждено было положить начало возрождению науки в этой стране. Джамбатиста Бенедетти (1530—1590) был предшественником Галилея в опровержении ошибок Аристотеля в вопросах движения, центробежной силы и тому подобных; он также предпочитал «теорию Аристарха, божественным образом разъясненную Коперником, против которой бессильны доводы Аристотеля» и дошел даже до того, что предположил, что планеты населены, поскольку центр лунного эпицикла все-таки вряд ли был единственной целью творения.

Вращение Земли признавал также Франческо Патрици (1530—1597), философ-вольнодумец, на том основании, что звезды, если они на самом деле движутся, либо должны быть прикреплены к огромной сфере, которую он объявляет невозможной по причине громадной скорости ее вращения, либо свободно перемещаться в пространстве, что для более отдаленных из них было бы равно невозможно. Орбитальное движение он отвергает, и даже геогелиоцентрическая система Браге не находит у него благоволения (он допускает нелепую ошибку, считая Браге приверженцем теории твердых небесных сфер), и он скорее отстает от своего века, так как делает общие замечания о безупречно равномерном движении планет, что совсем не соответствует наблюдаемым явлениям. Патрици был противником аристотелевской физики только потому, что был поклонником Платона, и он едва ли мог внести заметный вклад в подготовку сцены для выхода Галилео Галилея, так как вообще не сумел осознать ценности и необходимости наблюдения и эксперимента.

В то время как Патрици, будучи платоником, смог принять только ту часть новой системы, которую оказалось возможно примирить с платоновской концепцией мироздания, революционный дух Джордано Бруно сделал его яростным приверженцем Коперника. Он особо подчеркивал безграничность Вселенной и бесчисленное множество существующих в ней миров и в своей книге De immenso, «О бесконечности Вселенной», подробнейшим образом опровергает аргументы Аристотеля против бесконечности мира, утверждая, что мир не имеет центра и вращение Земли является истинной причиной видимого движения, якобы производимого перводвигателем. Земля – такое же светило, как Луна и планеты. Он славит гениального Коперника за свободу от предрассудков, хотя и сожалеет, что тот больше был склонен изучать математику, чем природу, и потому не смог освободиться от негодных принципов. Очевидно, что планетные теории Коперника не пришлись по вкусу Бруно, который в своих рассуждениях не ограничился тем, что можно доказать на основе наблюдений и расчетов, но позволил своему разуму свободно парить в космосе. Конечно, некоторые его идеи оказались настоящими пророчествами, например что Земля сплющена у полюсов, что Солнце вращается и что неподвижные звезды – такие же солнца, как наше. Однако его едва ли можно рассматривать в качестве представителя своей эпохи как по философским взглядам, так и по религиозным убеждениям. На столетие раньше он пользовался бы в Риме большим почетом, но в 1600 году для него не нашлось места, и его сожгли как еретика.

Интересно, хотя и бесполезно, порассуждать о том, каковы были бы шансы на мгновенный успех у труда Коперника, если бы он появился на пятьдесят лет раньше. Гуманисты, конечно, отличались большой свободой мысли, и они не имели бы предубеждений против новой концепции мироздания, поскольку она противоречила средневековым понятиям о череде планетных сфер внутри сферы эмпирея, где отведены места для ангельской иерархии. Если бы одного из глав церкви (по крайней мере в Италии) в начале XVI века спросили, не относится идея движущейся в пространстве Земли к откровенно еретическим, он, пожалуй, просто улыбнулся бы невинности вопрошающего и ответил бы словами Помпонацци, что одно и то же может быть правдой в философии и в то же время ложью в богословии.

Но времена изменились. Солнце Возрождения закатилось, когда в 1527 году орды коннетабля де Бурбона разграбили и осквернили Рим; Реформация положила конец религиозной и интеллектуальной солидарности народов, и соперничество между Римом и протестантизмом поглотило умственные усилия Европы. В силу этого во второй половине XVI века наука почти не развивалась, и, хотя астрономия и астрология привлекали немало студентов (среди которых оказался и один выдающийся), все же краеугольным камнем и вершиной считалось богословие. А богословие стало означать самое буквальное принятие каждого слова Писания; для протестантов – по необходимости, потому что они отрицали власть пап и соборов, для католиков – из желания более узко определить свои доктрины и доказать, насколько необоснованно восстание против римской церкви. Пришел конец всем разговорам о христианском Возрождении и всякой надежде на примирение веры и разума; возник новый дух, претендовавший на абсолютный контроль для церковной власти. Поэтому ни от одной стороны нельзя было ждать какого-то благоволения к новому учению.

Лютер в одной из своих «Застольных бесед» со своей обычной грубостью выказал мнение о «новом астрологе», который якобы доказывает, что Земля движется.
«Этот дурак хочет перевернуть всю науку астрономию, но Священное Писание явно говорит, что Иисус Навин велел стоять на месте солнцу, а не земле».
Это неудивительно, ведь Лютеру всегда был чужд гуманизм, но более примечательно то, что и высококультурный Меланхтон не раз и не два огульно осуждает Коперника. Еще за два года до выхода книги Коперника Меланхтон написал в письме, что мудрые правители должны обуздывать подобную распущенность ума [Мудрые правители Рима так и поступили в 1633 году, так что протестанты не имеют права их упрекать].

А в своем Initia doctrinae physicae, «Введении в физическое учение», опубликованном в 1549 году, он полностью погружается в эту тему в разделе, озаглавленном «Quis est motus mundi?», «Каково движение мира?». Для начала он обращается к свидетельству наших органов чувств. Затем приводит отрывки из Ветхого Завета, в которых о Земле говорится, что она покоится, и о Солнце, что оно движется. В конце концов он пробует силы в «физических аргументах» вот такого рода:
«Когда окружность вращается, центр остается неподвижным; но так как Земля является центром мира, следовательно, она неподвижна».
Прекрасное доказательство. Ему было бы лучше остановиться на апелляциях к Писанию и на личных нападках, с которыми он выступал в 1541 году.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Тихо Браге и его современники (2)

Новое сообщение ZHAN » 22 янв 2019, 09:23

Таково было отношение к новой системе немецких реформаторов, и очень любопытен среди них голос священника, вопиющего в пустыне, который пытался при помощи Библии доказать, что Земля вертится. И кто бы мог подумать, что это случилось не где-нибудь, а в Испании! Дидак Стуника, или Диего де Суньига [Диего де Суньига был монахом-августинцем и доктором богословия Университета Толедо; не путайте его с тезкой, писавшим против Эразма Роттердамского и умершим в 1530 году] опубликовал в 1584 году в Саламанке комментарий на Книгу Иова, в котором рассматривал фрагмент «[Он] сдвигает землю с места ее, и столбы ее дрожат». Он утверждал, что намного легче понять этот отрывок в свете мнения пифагорейцев, которое «в наш век высказывает Коперник». Единственный аргумент, который он приводит в пользу Коперника, заключается в том, что его учение лучше объясняет явление прецессии и то, почему Солнце сейчас на 40 000 стадиев ближе к нам, чем полагали в прошлые времена. Отрывки из Библии, где говорится о движущемся Солнце, на самом деле относятся к движению Земли, которое «фигурой речи приписывают Солнцу даже сам Коперник и те, кто разделяет его учение».

Сторонники буквального толкования не принимали объяснения Суньиги; по сути, тот самый отрывок, который он прокомментировал, всегда приводили как свидетельство того, что Земля имеет отведенное ей особое место, и за все свои труды этот благонамеренный автор получил в награду лишь то, что его сочинение в следующем веке поместили в индекс запрещенных книг.

Бессмысленно было бы подробно излагать все доводы против движения Земли, основанные на Священном Писании, которые были в ходу в XVI и XVII веках; они мало чем отличались от тех, к которым прибегали Отцы Церкви за тысячу лет до того в защиту вавилонской системы мироздания. Однако до сих пор церковь еще воздерживалась от принятия каких-либо мер для подавления новой доктрины, видимо, потому, что считала ее лишь академическим предметом для пустопорожних дискуссий, а не темой, которую серьезно стал бы рассматривать какой-либо здравомыслящий человек, поэтому церковь пока еще не испытывала страха перед распространением этой пагубной идеи из-за якобы непреодолимых с точки зрения физики возражений против какого бы то ни было движения Земли. На некоторые из этих возражений в те дни было довольно трудно ответить, а вот другие опирались на совершенно бездоказательные допущения [Здесь нам придется опустить возражения, которые выдвигали люди абсолютно невежественные даже в самых зачатках астрономии. Вопиющий пример подобного рода предоставляет нам Франческо Инголи из Равенны, который в одном из аргументов утверждает, что, если бы Солнце находилось в центре, оно имело бы больший параллакс, чем Луна, потому что чем дальше тела от перво двигателя, на котором отмечены их места и параллаксы, тем больше их параллакс. Самым тяжелым должен быть центр, ибо, когда просеивают пшеницу, комки земли в ней под действием кругового движения сита собираются в середине, и т. д. и т. и. Ответы ему написали Кеплер и Галилей].

Такой часто повторяемый аргумент, что, если бы суточное движение Земли увлекало воздух за собой, это вызывало бы ужасные ураганы, мог показаться ничтожным такому человеку, как Тихо Браге [Кеплер в письме к Фабрициусу говорит, что его возражение само словно ветер, «ничего не производит, кроме шума»]; и все же он сохранял популярность в то время и был даже обстоятельно изложен Джорджем Бьюкененом, известным шотландским ученым и государственным деятелем, в его латинской поэме «О сфере» [Поэма увидела свет только после смерти Бьюкенена в 1582 году. Вероятно, он встречался с Тихо Браге в 1571 году, когда впервые отправился в Данию, чтобы попытаться убедить датское правительство отдать Ботвелла (супруга королевы Шотландии Марии Стюарт, бежавшего в Норвегию после ее отречения)].
Изображение

Но была и еще одна трудность, на которую даже самые решительные приверженцы Коперника не могли дать удовлетворительного ответа. Если Земля вращается, говорили им, стрела, выпущенная из лука вертикально вверх, не сможет упасть прямо вниз и должна упасть на расстоянии многих миль. Ведь если ответить, что воздух тоже движется и уносит стрелу с собой, на это можно возразить, что, даже если предположить, что воздух перемещается (и что его, кстати, перемещает?), он должен двигаться гораздо медленнее, чем Земля, будучи совершенно другим по составу и свойствам, так что стрела все равно отставала бы от Земли, и по этой же причине человек, находящийся в очень высокой башне, всегда ощущал бы сильный ветер. И опять-таки, если человек уронит камень с вершины башни, этот камень никогда не сможет упасть на Землю в месте, расположенном перпендикулярно ниже того, из которого он был сброшен. Ведь если воздух движется вместе с Землей, он не может увлекать с собой тяжелый камень с той же скоростью; и даже если камень двигался бы по кругу от природы, как Земля, он не мог бы лететь так же быстро, как Земля, ведь она находится в своем природном месте, в то время как камень пытается достичь своего природного места в результате падения, как признавал сам Коперник.

На это последнее возражение приверженцы Коперника до Галилея обычно не могли дать верного ответа, поскольку обе стороны были одинаково невежественны в отношении законов движения и обе прибегали к одинаково туманным рассуждениям о том, какое поведение естественно или неестественно для тела, – рассуждениям, которые позволял себе Аристотель почти за две тысячи лет до того. Тихо Браге утверждал, что этот довод о падении камня неопровержим, и весьма любопытно, что даже он, научивший астрономов выводить законы движения планет из наблюдений, и не подумал произвести простой эксперимент, бросив камень сверху мачты быстро движущегося корабля. Он мог бы сделать это десятки раз, путешествуя взад-вперед между своим островом и берегами Зунда; тем не менее он смело утверждает, что пуля, пущенная вертикально вверх с палубы движущегося корабля, не упадет снова на то же место, как полагают некоторые, но чем быстрее корабль движется, тем больше будет расстояние [Галилей, видимо, был первым, кто произвел-таки эксперимент, которым пренебрег Тихо Браге]. Хотя Браге любил рассуждать о связи между небесными и земными (то есть химическими) исследованиями, ему не приходило в голову проверить истинность своего утверждения экспериментом.

Поэтому не следует удивляться, что, за исключением немногих уже упомянутых нами людей, в первые полвека после 1543 года никто не признавал учение Коперника истинным, хотя все пользовались «Прусскими таблицами». Некоторые авторы даже прибегали к довольно сильным выражениям по его поводу. Так, Мавролико в небольшой книге De sphaera, «О сфере», говорит, что Коперника, который заставил Землю вращаться, лучше стерпеть и он больше заслуживает кнута, чем опровержения. Но, может быть, он имел в виду только то, что, если Коперник заставил Землю вертеться, как детский волчок, ему следует дать кнут, чтобы его игрушка продолжала вертеться [Иначе нет смысла в выражении, что его лучше «стерпеть»].

Каспар Пейцер, профессор Виттенбергского университета и зять Меланхтона (который, возможно, и внушил ему предубеждение против новой системы), говорит в книге об астрономических гипотезах, «приспособленных к наблюдениям Н. Коперника и составленным им таблицам», что он не уделяет внимания гипотезе Коперника, дабы не обидеть и не встревожить ею начинающих; а в другом месте – что нелепости Коперника, столь далекие от истины, просто оскорбительны.

Даже Николас Мюллер, профессор Гронингенского университета, который в 1617 году редактировал третье издание работы Коперника, в двух предыдущих публикациях заявлял, что пока еще он ни разу не встречал какой-либо уважительной причины для отказа от прежней системы, которую к тому же поддерживает Писание, и что он, возможно, охотнее последовал бы за Коперником, если бы тот оставил Землю в середине мира и только придал ей суточное движение.

Странно, что Мюллер и многие другие были готовы признать вращение Земли, но чувствовали себя обязанными отвергнуть ее орбитальное движение; ведь предполагаемые физические опровержения в равной степени применимы и к первому, и ко второму. Возможно, причиной такого различного отношения было именно то, что старую систему поддерживало Священное Писание. Причина, которую приводят сторонники Коперника для отказа от суточного вращения звезд: что звездной сфере приходилось бы нестись с невообразимо огромной скоростью, все же не очень убедительна. Надо помнить, что в те дни размеры Вселенной представлялись довольно скромными. Предполагаемое расстояние до Солнца, а следовательно, и расстояния между планетами, по тогдашним понятиям, были в двадцать раз меньше, чем на самом деле; и даже самый точный наблюдатель века – Тихо Браге едва ли смог бы обнаружить годовой параллакс в одну минуту у звезды, даже если бы он существовал, то есть даже скорость неподвижной звезды не казалась бы столь огромной.

В учебнике англичанина Томаса Лидиата под названием Praelectio astronomica, «Лекция по астрономии», сделано очень разумное замечание, что если Коперник и его сторонники никогда не видели движений быстрее полета птицы, то скорость летящей стрелы или пушечного ядра показалась бы им в равной степени невероятной. Это замечание едва ли не единственное оригинальное во всей книге, совершенно средневековой во всех отношениях, даже в вере в существование воды над твердью, которая якобы движется вместе с ней, потому что вода никогда не бывает в состоянии покоя, если только не находится в вогнутом сосуде [Другие любопытные замечания из книги: звезда 1572 года и комета 1577 года доказывают, что вышний мир так же подвержен изменениям, как и подлунный, следовательно, между ними нет существенных различий. Звезды не прикреплены к сплошным шарам, но висят в жидком эфире, который является наисильнейшим видом огня. Движение планет на восток представляет собой лишь отставание от общего движения на запад; поворот Солнца в солнцестояниях вызывается более плотным воздухом. Венера больше отходит от Солнца, чем Меркурий, из-за того, что ее более крупное тело более восприимчиво к распространению солнечных лучей].

В течение многих лет после того, как труд Коперника увидел свет, астрономия не добилась никакого прогресса; мнения выдвигались против мнений, в то время как планетная теория не сделала практически ни шага вперед со времен Птолемея. Первое предупреждение о том, что астрономию следует развивать совершенно по-другому, пришло со стороны французского математика Пьера де ла Раме, или Петра Рамуса, профессора философии и риторики Королевского коллежа в Париже, который с юности был решительным противником аристотелевской натурфилософии. В 1569 году он опубликовал в Базеле труд Scholarum mathematicarum Libri XXXI, «Математические школы в 31 книге», три первых тома которого содержат историю математики. Рассматривая применение математики в астрономии, во втором томе он говорит, что астрономия есть не что иное, как арифметический расчет небесных движений и геометрическое измерение размеров небесных сфер. Множество гипотез создают препятствия для астрономии, и от них ее может освободить математика. Халдеи и египтяне владели астрономией без гипотез, основанной на наблюдениях; затем Евдокс изобрел гипотезу вращающихся сфер, которую улучшили Аристотель и Каллипп, а пифагорейцы, в противовес им, ввели эпициклы и эксцентры. Недавно Коперник, астроном, не только сопоставимый с древними, но и достойный всяческого восхищения, отверг все устаревшие гипотезы и возродил те замечательные, что демонстрируют астрономию движением не звезд, а Земли. Если бы только Коперник не оперировал гипотезами, было бы гораздо легче создать такую астрономию, которая соответствовала бы истинному положению звезд, а не двигала бы Землю, словно великан; но еще есть надежда, что появится какой-нибудь выдающийся немецкий философ и создаст новую астрономию на основе тщательных наблюдений с помощью логики и математики, отбросив все древние концепции.

Путешествуя по Германии в 1569 году или начале 1570 года, в Аугсбурге Раме познакомился с молодым датчанином Тихо Браге (1546—1601), который уже снискал себе некоторую известность в Германии своими педантичными наблюдениями звезд. В ходе продолжительной беседы Раме изложил Браге (который оставил нам отчет об этом разговоре [В письме к Ротману]) свою точку зрения, но молодой человек ответил, что астрономия без гипотез невозможна, потому что, хотя наука должна полагаться на числовые данные и измерения, движения звезд можно представить лишь в виде кругов и других геометрических фигур. Браге, как видно, так и не понял, что Раме возражал против основополагающего допущения всех предыдущих систем – о том, что планеты могут двигаться только по круговым орбитам или по орбитам, состоящим из комбинаций кругов, и против абсолютно произвольного предположения Птолемея о том, что центр деферента находится на полпути между Землей и центром экванта. Раме хотел, чтобы человечество начало с нуля и установило, какая орбита наилучшим образом удовлетворяет наибольшему количеству наблюдаемых местоположений планет; и фактически это и сделал Кеплер тридцать лет спустя. Но Браге уже задолго до этой встречи заметил, что главным недостающим элементом астрономии в то время были продолжительные и систематические наблюдения планет, и он конечно же должен был согласиться с точкой зрения Раме, высказанной в его недавно опубликованной книге, что в основу астрономии необходимо положить наблюдения. Об этом принципе он не забывал в течение всей своей жизни и не ограничивался одними наблюдениями, но до самой смерти выводил из них важные результаты, и этот труд затем блестящим образом продолжил его великий преемник Кеплер. Однако здесь мы все же должны обратить особое внимание на его позицию по отношению к злободневному вопросу и изложить причины, заставившие его выступить против Коперника, человека, чьи научные заслуги он мог оценить лучше, чем кто-либо другой из современников, и о котором он всегда говорил с величайшим почтением.

Трудность согласования движущейся Земли с некоторыми фрагментами Писания для Браге стала реальным аргументом против новой системы [В письме он говорит, что Моисей должен был неплохо разбираться в астрономии, ведь он называет Луну меньшим светилом, хотя видимые диаметра Солнца и Луны примерно одинаковы. Кроме того, пророки, надо полагать, знали об астрономии больше, чем их современники].

Но было и много других возражений. Во-первых, трудно вообразить себе, как «тяжелая и вялая Земля» летит в пространстве, и необъятность расстояния, которое якобы разделяет орбиту Сатурна и неподвижные звезды, ведь Браге не обнаружил ни следа их годового параллакса [Расстояние от звезд до Сатурна в 700 раз больше расстояния от Солнца до Сатурна (из письма к Кеплеру)].

Во-вторых, он полностью разделял тогдашнее убеждение в том, что брошенный с башни камень упадет очень далеко от ее подножия, если Земля вращается или обращается вокруг Солнца [Мы уже упоминали его мнение о пушечном ядре, выпущенном вверх с движущегося корабля].

«Тройное движение» Земли, которое предположил Коперник, тоже казалось ему практически немыслимым. Но главное возражение Тихо Браге, которое он, по-видимому, выдвинул первый, состояло в следующем. Пока изобретение телескопа не выявило тот факт, что неподвижные звезды, в отличие от планет, видны всего лишь как светящиеся точки, а не диски, были распространены самые раздутые представления об их видимых диаметрах, о чем мы уже говорили в главе об арабской астрономии. Браге предполагает следующие диаметры: у звезд первой величины – 120″, второй – 90″, третьей – 65″, четвертой – 45″, пятой – 30″, шестой – 20″. Итак, если годовой параллакс звезды третьей величины равен одной минуте, то звезда должна быть величиной с годовую орбиту Земли с Солнцем в центре. Так насколько же велики должны быть самые яркие звезды и насколько невообразимо громадны они были бы, если бы годовой параллакс был еще меньше?

Все эти возражения Браге изложил в разных письмах к Ротману, но тот не счел их убедительными. На аргументы, основанные на буквальном толковании Библии, он весьма разумно ответил вопросом: а надо ли верить и в существование небесных окон, о которых говорится в рассказе о Всемирном потопе? Что же касается того, что Земля слишком велика, чтобы двигаться, то он ссылается на идею Коперника, что сила тяжести есть не что иное, как присущая всем частицам тенденция группироваться в шаровидные тела, и так как Земля в любом случае является свободно подвешенной в эфире, подобно планетам, то почему бы ей и не иметь движения, подобно планетам? Равно его не беспокоит и падающий камень, и он отвечает, что камень, как и башня, участвует в движении Земли как до, так и во время падения камня [Ср. аргументы Кеплера. Он говорит, что дело обстояло бы иначе, если бы камень находился на расстоянии, сравнимом с диаметром Земли. Гильберт в «О магните» высказывается несколько более туманно: тяжелые тела соединены с Землей своей тяжестью и участвуют вместе с ней в общем движении; движение падающего тела является не составным, происходящим от накопления движений и круговращения, а простым и прямолинейным].

И почему же абсурдно предполагать существование огромного пространства между орбитой Сатурна и неподвижными звездами или что звезда третьей величины может быть размером с орбиту Земли? Неужели мы будем ограничивать божественную мудрость и могущество?

Что касается тройного движения, то он говорит, что Земля не присоединена к твердому шару, несущему ее по кругу, и не имеет опоры, а ее ось просто сохраняет один и тот же угол относительно оси зодиака. Поэтому нет необходимости предполагать третье движение; достаточно лишь суточного и годового, и он признает, что в данном вопросе Коперник высказался довольно невразумительно.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Тихо Браге и его современники (3)

Новое сообщение ZHAN » 24 янв 2019, 09:40

Весьма похвально, что Тихо Браге опубликовал все эти ответы на свои возражения против системы Коперника; однако он не преминул ослабить их эффект, прибавив примечания, заполнившие пять отпечатанных мелким шрифтом страниц, где он утверждает, что ему удалось настолько убедительно изложить свою точку зрения Ротману во время месячного визита, с которым тот приехал к нему в 1590 году, что этот по характеру очень упрямый человек поколебался и в конце концов объявил себя побежденным. В этом примечании Браге подробно повторяет свои аргументы, но приводить их здесь излишне; что касается падающего камня или дальности выстрелов из пушки, произведенных последовательно на восток и на запад, то он отказывается верить, что телу могут быть присущи два движения одновременно (так как одно будет мешать другому) и что разреженный воздух в состоянии увлекать вместе с собой тяжелый камень в своем предполагаемом круговом движении – чего Ротман, кстати, о воздухе не утверждал.

Но хотя Браге придерживался взгляда, что Земля находится в состоянии покоя, он все же не принимал системы Птолемея. В трех письмах, написанных с 1587 по 1589 год, он утверждает, что был вынужден отказаться от нее, когда из утренних и вечерних наблюдений Марса в противостоянии (в период с ноября 1582 по апрель 1583 года) установил, что эта планета находится ближе к Земле, чем Солнце, в то время как по Птолемею она должна быть дальше, чем Солнце. Итак, Браге не определил заново солнечный параллакс (как он сделал со всеми другими астрономическими постоянными), но согласился с античным значением 3′; нашел ли он затем, что параллакс Марса больше 3′? Нет, так как Кеплер не смог вывести никакого разумного параллакса из наблюдений Браге; но, к своему удивлению, в рукописях Браге он нашел, что какой-то ученик или помощник (по недоразумению, как он предполагает) рассчитал параллакс Марса из планетных элементов Коперника и нашел, что он больше солнечного [Браге говорит, что у внешних планет едва различимые параллаксы, но при помощи точнейшего инструмента он нашел, что Марс в противостоянии ближе Солнца].

То, что Браге допустил ошибку, полагая, что его наблюдения дали больший параллакс Марса, чем солнечный, тем более удивительно, что, как мы видим, в 1584 году он заявил, что те же наблюдения дают параллакс гораздо меньше, чем у Солнца, и это показывает, что система Коперника неверна! Во всяком случае, впоследствии он пришел к противоположному мнению и потому отверг систему Птолемея, а также (как он добавляет в письме к Ротману от 1589 года) он замечает, что кометы в противостоянии не приобретают попятного движения, как планеты, по каковой причине он счел себя обязанным отказаться от системы Коперника, так что ему не осталось ничего иного, кроме как изобрести новую.

В восьмой главе своей книги о комете 1577 года (где параллакс Марса не упоминается) Браге излагает свою собственную систему, о которой говорит, что он пришел к ней «как бы по озарению» за четыре года до написания книги, то есть в 1583 году [В письме от 31 января 1576 года друг Браге Иоганн Пратенсис просит у него разъяснений насчет гипотез Птолемея и Коперника, нужно ли признавать какую-то из них. Спрашивается, продумал ли Браге свою систему до 1576 года? Если да, почему он не сказал об этом позже? Это письмо существует только в копии, сделанной для публикации в последние годы жизни Браге. Может быть, оно не настоящее?]. Земля является центром Вселенной и центром орбит Луны и Солнца, а также сферы неподвижных звезд, причем последняя вращается вокруг Земли в двадцать четыре часа, унося с собой все планеты. Солнце является центром орбит пяти планет, из них Меркурий и Венера движутся по орбитам, радиусы которых меньше, чем у солнечной орбиты, а орбиты Марса, Юпитера и Сатурна окружают Землю. Чтобы расстояние до Марса в противостоянии могло быть меньше, чем до Солнца, полудиаметр орбиты Марса должен быть немного меньше диаметра орбиты Солнца, так что две орбиты пересекаются друг с другом, но, так как это всего лишь воображаемые линии, а не сплошные сферы, в этом нет ничего нелепого.
Изображение
Система мира Тихо Браге

Эта система в действительности абсолютно идентична системе Коперника, и все расчеты местоположения планет одинаковы в обеих системах [И все равно Браге, который очень гордился своей системой, не позволял называть ее видоизмененной коперниковской]. Так как геогелиоцентрическая система Браге оставляет Землю неподвижной, она может служить ступенькой от Птолемея к Копернику, и можно было бы ожидать, что ее предложит именно Коперник. Он мог задумываться о ней в молодости, но, если это так и было, Коперник не удовольствовался ею, а сразу же приступил к разработке ее логического продолжения – гелиоцентрической системе. Планетные теории Коперника, разумеется, можно было применить к новой системе без изменений, и Тихо Браге, если бы прожил дольше, намеревался использовать собственные наблюдения для подготовки новых элементов орбит в великом труде под заголовком Theatrum astronomicum, «Астрономический театр». В своем Astronomiae instauratae progymnasmata, «Приготовлении к обновленной астрономии», он дает лишь набросок теории Сатурна с целью нахождения наибольшего расстояния Сатурна от Земли, принимая «эпицикл эпицикла» Коперника. Таким образом он приходит к выводу, что наибольшее расстояние от Сатурна до Земли составляет 12 300 полудиаметров Земли, и, так как он возражает против огромного пустого пространства между орбитой Сатурна и неподвижными звездами, он помещает их на расстоянии 14 000, а новую звезду 1572 года – по крайней мере на расстоянии 13 000 полудиаметров. Эта новая звезда, которая во многих отношениях определила направление исследований Тихо Браге, заставила его размышлять о природе небесных тел. Он считал, что звезда образована из «небесной материи», не отличающейся от той, из которой состоят другие звезды, за исключением того, что она не имела того совершенства или твердого состава, как у постоянных звезд, что и стало причиной ее быстрого растворения. Образующее звезду вещество взято из Млечного Пути, близко от края которого она располагалась. Действительно, до изобретения телескопа было вполне естественно предположить, что Млечный Путь имеет характер туманности, и потому такая идея не компрометирует Браге. Он считал, что звезды состоят не из того же вещества, что и Земля, а, скорее, находятся в том же отношении с ней, как душа с телом. В отличие от Ротмана Браге не думал, что небесное пространство заполнено разреженным воздухом.

Дискуссия о движении планет 1577 года дала Браге возможность обнародовать свою систему. В течение всего Средневековья господствующее аристотелевское понятие об атмосферном происхождении и природе комет мешало уделить этим небесным телам должное внимание, и Региомонтан первым попытался определить расстояние до комет. Из-за отсутствия хороших инструментов он потерпел неудачу, так как лишь установил, что у кометы 1472 года параллакс не мог быть больше 6°. Хотя с того времени начались регулярные наблюдения за кометами, Тихо Браге первым убедительно доказал, что кометы имеют очень небольшие параллаксы и, следовательно, находятся гораздо дальше, чем Луна, орбита которой до той поры считалась пределом элементарного мира [Кардан уже в 1550 году заключил из отсутствия параллакса, что кометы не могут быть телами в атмосфере, но не пояснил, как пришел к такому выводу].

Комета 1577 года также оказалась первой, у которой попытались вычислить орбиту; в результате своих расчетов Браге нашел, что комета движется вокруг Солнца по круговой орбите, выходящей за пределы Венеры, причем с попятным движением и наибольшей элонгацией от Солнца, равной 60°. Он не смог найти равномерное движение на этой орбите, чтобы отобразить наблюдаемые положения кометы, и был вынужден допустить нерегулярное движение, и, чтобы объяснить его, он замечает, что в данном случае можно ввести эпицикл, но, так как неравенство составляет лишь 5′, он не считает нужным заходить так далеко в уточнении теории такого транзитного тела, как комета; кроме того, есть вероятность, что кометы, которые существуют лишь короткое время, движутся не с такой же регулярностью, как планеты. В качестве альтернативного объяснения он предполагает, что форма орбиты не может быть
«в точности круговой, но должна быть несколько продолговатой, подобной фигуре, которую обычно называют овалом».
Это определенно первый раз, когда астроном высказывает гипотезу, что небесное тело может двигаться по орбите отличной от окружности, хотя четко и не говорит, что кривая получается в результате нескольких круговых движений. Местлин тоже вычислил орбиту этой кометы и, как и Браге [Браге полагал, что хвост кометы повернут от Венеры, а не от Солнца], обнаружил, что она вращается вокруг Солнца, выходя за пределы орбиты Венеры, но он объясняет неравномерность ее движения, вводя небольшой круг либрации, по диаметру которого комета колеблется из стороны в сторону. Браге не одобряет эту идею, потому что орбиты не являются реально существующими объектами; но годы спустя, разрабатывая свою теорию Луны, он не смог обойтись без этого и подобных приемов.

Второй том книги De mundi oetherei recentioribus phoenomenis, «О недавних явлениях в небесном мире», вышел из печати в 1588 году, и, хотя серийная публикация состоялась уже после 1603 году, несколько экземпляров немедленно разошлись между друзьями и корреспондентами Браге. Немало этих экземпляров дошло до наших дней с оригинальным титульным листом и колофоном 1588 года. Благодаря этому мир сразу же узнал о геогелиоцентрической системе мира, и некий шотландец по имени Дункан Лиддел уже в 1589 или 1590 году читал по ней лекции в Ростоке, заявляя, что нашел ее сам независимым путем. Однако тут же объявился более опасный конкурент в лице Николауса Реймерса, прозванного Урсус, урожденного Гольштейна. Этот человек служил у датского дворянина, с которым в 1584 году отправился в Вен, и менее чем через два года он оказался в Касселе, где заявил, что открыл точно такую же систему, как у Браге, за исключением того, что она допускала вращение Земли. Ландграфу Гессенскому, большому любителю астрономии, так понравилась эта система, что он велел сделать ее модель своему мастеру-механику – знаменитому математику Бюрги. Браге услышал об этом, только когда его собственная книга добралась до Касселя, но очень скоро в свет вышла небольшая книжка, в которой Реймерс излагал новую систему. Она называлась Nicolai Raymari Ursi Dithmarsi Fudamentum Astronomicum, «Основы астрономии Николая Реймерского Урсуса Дитмарского», и была отпечатана в Страсбурге в 1588 году (ин-кварто с двумя полностраничными иллюстрациями). Большая часть книги посвящена тригонометрии, но одна глава «О наблюдении за движениями планет и посему о нашей новой гипотезе» описывает новую систему, ни словом не упоминая Тихо Браге. Браге решил, что Реймерс украл идею у него, но, когда это обвинение увидело свет в опубликованной переписке с Ротманом, Реймерс ответил весьма оскорбительной книгой De astronomicis hypotensibus, «Об астрономических гипотезах» (Прага, 1597), и их перебранка продолжалась вплоть до смерти Реймерса в 1600 году.

Однако нет малейших доказательств этого якобы плагиата. Идея геогелиоцентрической системы была настолько очевидным следствием из коперниковской системы, что она практически обязана была независимо прийти в голову разным людям; и Реймерс, который определенно был способным математиком, вполне мог придумать ее сам. Он не мог разделять обычные возражения против движения Земли, ведь он признавал ее вращение; более того, трудно понять, почему кто-либо, признавая вращение Земли, стал бы отрицать ее орбитальное движение, если только не из религиозных соображений. Из схемы в книге Реймерса следует, что он не видел необходимости допускать (как это делали Коперник и Браге), что расстояние до Марса в противостоянии меньше, чем расстояние до Солнца, так как у него две орбиты не пересекаются друг с другом.

В отличие от Коперника Браге имел в своем распоряжении большую массу наблюдений за Солнцем, Луной и планетами в их путешествиях по небу, которые наблюдались в течение многих лет по хорошо продуманному плану, а не эпизодически в противостояниях или других интересных точках орбит. Таким образом в отношении движения Луны ему удалось сделать первый важный шаг вперед со времен Птолемея, так что к моменту его смерти были известны уже все значительные лунные возмущения, за одним исключением – векового ускорения среднего движения, которое можно обнаружить только путем сравнения наблюдений, сделанных в течение столетий. Движение по долготе он представил иным образом, нежели Коперник, и оно лучше согласовалось с наблюдаемыми положениями светил. Он поместил центр деферента (радиус =1) на малом круге с радиусом 0,021 74, на окружности которого помещена Земля, так что центр деферента приходится на Землю в сизигиях и наиболее удален от нее в квадратурах. Есть два эпицикла с радиусами 0,058 и 0,029, в первом случае период соответствует аномалистическому месяцу, а во втором Луна движется в два раза быстрее и в противоположном направлении, таким образом в апогее Луна на 0,29 выходит за пределы деферента, в перигее – заходит на 0,087. Эффект двух эпициклов дает максимум первого неравенства 4°59′30″, в то время как окружность, проходящая через Землю, дает второй = 1°14′45″, что ближе к истине, чем значение у Птолемея. Третье неравенство, или вариацию, Браге обнаружил еще до отъезда из Дании и объявил о нем в 1598 году, но не попытался учесть его добавлением еще одного эпицикла. Он всего лишь позволил центру первого эпицикла колебаться (либрировать) взад-вперед на деференте на 40,5′ в обе стороны от среднего положения, причем второй движется на деференте со средним движением Луны в аномалии, а центр эпицикла находится в среднем положении в сизигиях и квадратурах и наиболее удален в октантах, при этом период полной либрации равен половине синодического периода обращения. В то же время наблюдения Тихо Браге показали существование другого неравенства по долготе, четвертого, период которого равен солнечному году, так что наблюдаемое положение находится за вычисленным, когда Солнце движется от перигея к апогею, и перед ним в остальные шесть месяцев. Браге заметил это неравенство не позднее своего приезда в Виттенберг (с декабря 1598 года по начало мая 1599), но его трудно было ввести в и без того запутанную теорию. Поскольку период этого явления был равен году, Браге (или, вернее, его ученик Лонгомонтан) в конце концов сумел учесть его, исправив уравнение времени, или скорее, использовав значение, отличающееся от обычного на 8 мин 13 с, умноженное на синус солнечной аномалии, хотя это оставляет неучтенными 5′ или 6′ неравенства.

Открытия Тихо Браге в отношении движения Луны по широте оказались не менее важными, чем в отношении неравенств по долготе. Рассматривая свои наблюдения кометы 1577 года, он впервые заметил, что величина наклона лунной орбиты к эклиптике, принятая со времен Гиппарха (5°), слишком мала, и изучение всех его наблюдений наконец показало ему, что наклон колеблется между 4°58′30″ и 5°17′30″, в то время как обратное движение узлов, как оказалось, неравномерно, так что истинные места узлов иногда отставали или обгоняли средние на 1°46′. Это неравенство узлов не было обнаружено в Античности, поскольку оно исчезает в момент затмения, когда Луна находится и на узле и в сизигии. Браге объясняет это и изменение наклона той гипотезой, что истинный полюс лунной орбиты описывает окружность с радиусом 9′30″ вокруг среднего полюса, так что наклон достигает минимума в сизигии и максимума в квадратуре.

Многочисленным наблюдениям планет, сделанным Тихо Браге, в руках Кеплера суждено было стать завершающим штрихом к труду Коперника, раскрыв истинную природу планетных орбит. Но он не довольствовался простым накоплением материала и уже в 1590 году (или раньше) начал делать некоторые выводы из сравнения его результатов с положениями планет в таблицах. В том же году Джованни Антонио Маджини из Болоньи, довольно известный астроном своего века, в письме к Браге выразил подозрение, что эксцентриситет Марса периодически меняется. В своем ответе Браге заявил, что нашел такую проблему не только у Марса, но в меньшей степени и в теориях других планет и что хотел бы понаблюдать за противостояниями Марса по всему зодиаку, чтобы полностью исследовать это явление. В письме от 1591 года ландграфу Гессенскому Браге снова говорит об этом как о «еще одном неравенстве, вытекающем из солнечного эксцентриситета», а в письме Кеплеру от 1 апреля 1598 года идет еще дальше, говоря, что не только отношение полудиаметров планетных эпициклов не так просто, как думал Коперник, но и годовая орбита Земли (по Копернику) или эпицикл Марса (по Птолемею), видимо, варьируются в размере. Это был первый шаг на пути к открытию эллиптической орбиты, и Кеплер верно интерпретировал его как доказательство того, что эксцентриситет орбиты Солнца (который Браге нашел равным 0,035 84) вдвое больше, чем до сих пор предполагалось, так что движение не просто равномерно относительно центра орбиты, но и относительно punctum aequans, точки экванта, как в птолемеевской теории других планет [Что касается движения Солнца, можно отметить, что Браге нашел долготу апогея, равную 95°30′ с годовым движением 45″].

Наблюдения одного Солнца никогда бы не позволили выявить недостаточность простого эксцентрического круга. В последний год своей жизни, по завершении лунной теории, Браге приступил к исследованию движений планет, в чем принимал участие Кеплер, но в октябре 1601 года смерть Браге позволила Кеплеру свободно продолжить работу по собственному усмотрению.

Хотя Браге отверг движение Земли, он с математической точки зрения принял систему Коперника и, доказав, что кометы являются небесными телами, окончательно положил конец идее твердых сфер, благодаря чему значительно увеличил шансы новой системы на успех. В своих трудах Кеплер неоднократно ставит Браге в заслугу то, что он разделался со сферами. Другая античная ошибка, которую практически устранил Браге, заключалась в убежденности в неравномерном движении равноденствий, которое, как он показал, вызвано исключительно ошибками наблюдения [Когда была написана первая глава Progymnasmata (в 1588 г.), Браге, по всей видимости, верил в неравномерность, так как приписывал ей разные значения длины года, найденные исходя из наблюдений в разные эпохи. Позднее он ясно понял, что подобные несоответствия могут быть вызваны ошибками наблюдения]. Хотя Кеплер был скорее склонен признавать незначительную неравномерность величины годовой прецессии, трепет равноденствий с его громоздким механизмом отныне, можно сказать, исчез из истории астрономии.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Кеплер

Новое сообщение ZHAN » 25 янв 2019, 09:28

В январе 1599 года Местлин, услышав от своего бывшего ученика Иоганна Кеплера о трудностях, с которыми столкнулся Тихо Браге при определении эксцентриситетов планет, написал в ответ, что Браге оставил только тень от того, что раньше считалось астрономической наукой, и что теперь известно лишь одно: человечество ничего не знает об астрономии.

Великий астроном-практик действительно во всей полноте показал недостатки предыдущих теорий, но в то же время настолько увеличил точность наблюдений за положениями небесных тел, что создал возможность для создания удовлетворительной теории и, что еще лучше, для определения фактических орбит в пространстве, по которым движутся все планеты, чего до той поры не удавалось достигнуть никому. Благодаря Тихо Браге материал для изучения был готов, был готов и математик, который смог им воспользоваться; и это был тот самый человек, которому Местлин адресовал те отчаянные слова и который уже выступил с весьма многообещающим дебютом в научном мире.

Кеплер родился 27 декабря 1571 года в Вюртемберге и с 1589 года учился в Тюбингенском университете, где через Местлина познакомился с учением Коперника и убедился, что оно представляет собой истинную систему мироздания. Первоначально он собирался стать священником, но, так как лютеранская церковь или, скорее, чрезвычайная узость мышления, преобладавшая среди ее служителей, не пришлась ему по вкусу, в 1594 году он поступил на должность «математика провинции» в Штирии и с тех пор посвятил жизнь науке.
Изображение

Уже в 1596 году свет увидела его первая крупная работа, которую он, чувствуя, что это всего лишь предтеча других, еще более великих трудов, озаглавил Prodromus dissertationum cosmogra-phicarum continens mysterium cosmographicum, «Предвестник космологических сочинений, содержащий тайны мироздания». Хотя книга не раскрывает тайн устройства планетных орбит, как от души надеялся ее автор, она тем не менее содержит первое великое открытие Кеплера.

Причины отказа от птолемеевской системы в пользу коперниковской излагаются в первой главе с изумительной ясностью. На двух весьма наглядных чертежах он показывает, что птолемеевские эпициклы внешних планет с Земли видны точно под тем же самым углом, что и орбита Земли с точки на орбите каждой внешней планеты, а далее он демонстрирует, что это объясняет, почему у Марса такой огромный эпицикл, хотя у Юпитера эпицикл намного меньше, а у Сатурна и того меньше, притом что их эксцентры гораздо больше, чем у Марса. Птолемеевская система не могла объяснить причин ни такого причудливого устройства, ни того странного факта, что три планеты во время противостояния с Солнцем должны находиться на перигеях своих эпициклов. Также она не могла ни показать, почему периоды внутренних планет на их эксцентрах обязательно должны быть равны периоду Солнца, ни привести причин, почему Солнце и Луна никогда не совершают попятного движения. Все эти факты изумительно просто объясняются учением о годовом движении Земли, причем Коперник к тому же смог объяснить прецессию, не привлекая «той чудовищно громадной беззвездной девятой сферы альфонсинцев». Поистине невозможно понять, как можно было после прочтения этой главы оставаться приверженцем системы Птолемея.

Чего добивался Кеплер всю свою жизнь, так это найти тот закон, который связывает воедино тела Солнечной системы, применительно к расположению их орбит в пространстве и их движений, и он надеялся, что овладение этим законом позволит рассчитать все детали для любой планеты при условии, что известны элементы одной орбиты. Первая порция фактов содержится в Mysterium cosmographicum, «Тайне мироздания», которая рассматривает проблему нахождения закона, связывающего относительные расстояния планет. В предисловии он говорит читателю, как пришел к этому открытию, которое он полагает великим. Кеплер был убежден, что должна существовать какая-то причина, почему количество, расстояния и скорости движущихся небесных тел имеют именно те значения, которые следуют из наблюдений; и надежда найти ее основывалась на том, что неподвижные тела – Солнце, звезды и промежуточное пространство – соответствуют Богу Отцу, Богу Сыну и Святому Духу. Он пробовал установить, не может ли быть так, что одна сфера в два, три, четыре раза больше, чем другая; он пробовал поместить планету между Марсом и Юпитером и еще одну между Меркурием и Венерой (допустим, если она слишком мала, чтобы ее можно было увидеть), а когда ему даже не удалось найти простого отношения между расстояниями от Солнца, он попытался найти какую-нибудь тригонометрическую функцию, определяющую это отношение. Случайность в конце концов позволила ему найти закон расстояний в геометрии.

Во время лекции (9/19 июля 1595 года) Кеплер описывал циклы великих соединений планет и то, как соединения переходят из одного «тритона» зодиака в другой, и схема, которую он начертил для иллюстрации, напомнила ему о пяти правильных геометрических телах, и его осенило, что именно им, а не плоским фигурам подобает описывать отношения между космическими сферами (inter solidos orbes). Между шестью планетными сферами есть пять интервалов, и, приняв приведенные Коперником значения полудиаметров сфер, Кеплер обнаружил, что между сферами в следующем порядке помещаются пять геометрических тел:
Сатурн,
куб,
Юпитер,
тетраэдр,
Марс,
додекаэдр,
Земля,
икосаэдр,
Венера,
октаэдр,
Меркурий.

Сфера Сатурна описывает куб, в который вписана сфера Юпитера; та, в свою очередь, описывает тетраэдр, и так далее. Но так как орбиты планет являются не концентрическими, а эксцентрическими кругами, возникла необходимость (у арабов и Пурбаха) придать каждой сфере толщину, достаточную для вмещения эксцентрической орбиты между внутренней и внешней поверхностью.

В Средние века, как мы уже видели, существовала гипотеза, что внешняя поверхность одной сферы касается внутренней поверхности другой, ближайшей к ней, потому что система Птолемея не давала ни малейшего представления об относительных расстояниях планет. Однако система Коперника не позволяет произвольно выбрать размеры сфер, это заданные величины, оставляющие достаточно места между сферами. Поэтому встал вопрос: насколько размеры сфер, производные из расстояний и эксцентриситетов по Копернику, укладываются в вычисленные таким образом размеры пяти правильных тел, так чтобы внутренняя поверхность сферы совпадала со сферой, описанной вокруг следующего ниже тела, а внешняя поверхность – со сферой, вписанной в тело, следующее выше? В нижеследующей таблице показаны результаты вычислений Кеплера [Надо помнить, что для Кеплера эти сферы были всего лишь математическими понятиями, а не реально существующими телами]:
Изображение

Второе значение для Меркурия – это полудиаметр окружности, вписанной в квадрат, образованный четырьмя средними сторонами октаэдра. Если толщину земной сферы увеличить за счет включения лунной орбиты, цифры в последнем столбце становятся: 847 для Венеры и 801 для Земли. Совпадение между вычисленными значениями и значениями по Копернику вполне удовлетворительное, за исключением Юпитера, «чему не следует удивляться, учитывая огромное расстояние». Кеплер добавляет, что легко понять, насколько велика была бы разница, если бы схема противоречила природе небес, то есть если бы Бог в момент творения не имел в виду эти пропорции, ведь такое не может быть случайным. У всего должна быть причина, и Кеплер готов объяснить, почему пять правильных тел расположены именно в таком порядке. Они относятся к двум видам: первичному (куб, тетраэдр, додекаэдр) и вторичному (икосаэдр и октаэдр), которые во многом отличаются друг от друга. Земля, будучи жилищем человека, созданного по образу Божьему, достойна быть помещенной между двумя этими видами тел; куб является внешним, потому что он самый важный, так как единственный образован собственным основанием и своими углами указывает на три пространственных измерения. Для порядка других тел он приводит множество причин, одну фантастичнее другой. Но нам придется пропустить все эти любопытные детали, как и девятую главу, в которой из природы пяти геометрических тел выводятся астрологические свойства пяти планет.

Хотя кеплеровская разгадка «тайны мироздания» оказалась неверной, для него было вполне естественно начать эту работу с поисков каких-либо отношений между расстояниями планет от Солнца, и довольно странно, что он не наткнулся на последовательность, ошибочно называемую правилом Тициуса—Боде. Быть может, он смог бы ее найти, если бы сразу же не увлекся пятью телами и всю свою жизнь оставался верен своей первой небесной любви [В 1621 году он опубликовал второе издание книги без исправлений, но с примечаниями к каждой главе].

Совпадение между теорией и числовыми данными Коперника было неидеальным, и тогда перед Кеплером встал вопрос, как его улучшить. Он напоминает читателю, что труд Коперника не космографический, а астрономический, то есть для него не имело особого значения, если он слегка заблуждался относительно истинного соотношения сфер, при условии что с помощью одних только наблюдений он мог найти цифры, подходящие для вычисления движений и расположения планет. Поэтому ничто не мешает кому-то исправить его цифры, если только он не станет вносить больших или вообще любых изменений в уравнения времени. Что главным образом интересовало Кеплера в предпринятом им исследовании, это эксцентриситеты, от которых зависела толщина сфер. Тогда его озарило, что, хотя Коперник, вне всякого сомнения, поместил Солнце в центре Вселенной, все же «в качестве вспомогательного средства для расчета и чтобы не запутывать читателя слишком далеким отходом от Птолемея» он относил все не к центру Солнца, а к центру орбиты Земли. Следовательно, через эту точку в теории Коперника проходят не только линии узлов каждой планеты, но и линии апсид, так что эксцентриситеты отсчитываются от точки, расстояние которой от Солнца определяет размер эксцентриситета Земли. То есть следовать Копернику в этом вопросе означает не придавать Земле эксцентриситета и ее сфере – толщины, так что центры граней додекаэдра и вершины икосаэдра падают на ту же сферическую поверхность, уменьшая размеры системы более, чем позволяют наблюдения. Кеплер связался с Местлином, который охотно взялся за расчет изменений, которые повлечет за собой установление Солнца в качестве центра в данных Коперника. Естественно, что изменения оказались весьма значительными; так, было установлено, что долгота афелия Венеры отличается примерно на три знака зодиака (90°) от апогея, в то время как новое расстояние Сатурна отличается от старого на всю величину эксцентриситета Земли.

Затем Кеплер приводит таблицу годовых параллаксов планет в афелии, сначала (1) рассчитанных по его теории, исключая лунную орбиту из земной сферы, затем (2) согласно расстояниям от Солнца (Коперник) и, наконец, (3) рассчитанных по его теории с увеличением сферы Земли за счет лунной орбиты. Различия оказались весьма существенными [Например, для Марса 40°9′, 37°22′, 37″52′ и для Венеры 49°36′, 47°51′, 45°33′. В своей книге о Марсе Кеплер упоминает, что цифры в третьем предположении, если вдвое уменьшить эксцентриситет Земли, весьма близко соответствуют действительности], и положения планет, рассчитанные по новой теории, значительно отличаются от рассчитанных по «Прусским таблицам». Но это не заставляет Кеплера усомниться в истинности его теории.

В мастерски написанной второй главе он рассматривает недостатки теории Коперника и «Прусских таблиц», которые часто на несколько градусов отличались от наблюдаемых положений планет, и, в частности, показывает, что эксцентриситеты, указанные Коперником, не имеют ценности. Коперник полагал, что эксцентриситеты Марса и Венеры изменились, тогда как, если отнести их к Солнцу, оказалось, что они не меняются. Местлин обратил внимание Кеплера на слова Коперника, о которых сообщил Ретик, которые показывали, насколько глубоко великий мастер осознавал недостаточность данных, на которых ему приходилось основывать свои построения, и он объяснял ее тремя причинами: во-первых, некоторые наблюдения древних приведены недобросовестно и изменены так, чтобы укладываться в их теории; во-вторых, ошибки в расположении звезд у древних могут достигать 10′; и, в-третьих, не сохранилось сравнительно недавних наблюдений, подобных тем, которыми располагал Птолемей. Поэтому Кеплер спокойно ждал, когда астрономы вынесут свое суждение.

Наконец, Кеплер отважился на попытку найти «пропорции движений относительно орбит». Так как периоды обращения непропорциональны расстояниям до Солнца, мы должны либо предположить, что «animae motrices» [Души-двигатели; силы, движущие планетами], более удаленные от Солнца, слабее, либо что есть только одна anima motrix в центре всех орбит, а именно Солнце, которое более сильно действует на тела, расположенные ближе, нежели на расположенные дальше. Он отдает предпочтение второму допущению. Он полагает вероятным, что эта сила обратно пропорциональна кругу, по которому должна распределяться, и уменьшается по мере увеличения расстояния. В то же время период увеличивается с длиной окружности, «следовательно, большее расстояние от Солнца действует дважды на увеличение периода и, наоборот, половина увеличения периода пропорциональна увеличению расстояния». Например, период Меркурия составляет 88 дней, а Венеры – 224⅔ дня, так что половина увеличения периода равна 68⅓; следовательно, 88 : 156⅓ : : расстояние Меркурия : расстояние Венеры. Начиная от Сатурна, Кеплер находит следующие отношения расстояний:
Изображение
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Кеплер (2)

Новое сообщение ZHAN » 26 янв 2019, 12:09

«Мы приблизились к истине», – говорит Кеплер. Но пройдет еще двадцать два года, прежде чем он найдет истинный закон. Интересно отметить, что еще в 1596 году он распознал, что движением планет должна управлять или вызывать его сила, исходящая от Солнца, и что уже тогда он сделал ошибочное предположение, от которого так и не отказался, что действие этой силы обратно пропорционально расстоянию от Солнца.

Хотя главная идея «Тайны мироздания» была ошибочной, невозможно передать, насколько мы обязаны этому труду, так как он представляет собой первый шаг к очищению системы Коперника от пережитков птолемеевской теории, за которую она по-прежнему цеплялась.

Величайшим желанием Кеплера теперь стало получить более точные значения средних расстояний и эксцентриситетов, чтобы доказать абсолютную истинность его теории, и единственным местом в мире, где он мог получить такую информацию, была обсерватория Тихо Браге. Большое расстояние, отделявшее Грац от Дании, могло помешать Кеплеру отправиться к Браге на его остров, но, к счастью для научного прогресса, Браге, поссорившись со многими влиятельными людьми в Дании и, может быть, боясь, что его великое сокровище наблюдений могут забрать у него под тем предлогом, что они были сделаны за государственный счет и потому принадлежат государству, уехал из Дании в 1597 году и два года спустя поселился в Богемии. Вынужденный покинуть Штирию из-за религиозных гонений, Кеплер приехал в Прагу в январе 1600 года и в следующем году был назначен сотрудником к Браге, а в октябре 1601 года стал его преемником на посту императорского математика. Хотя вплоть до августа 1601 года ему приходилось часто отвлекаться от работу из-за поездок в Штирию по личным делам и болезни, вскоре он добился хорошего прогресса в изучении движений самой беспокойной планеты.

Когда Кеплер в феврале 1600 года присоединился к Браге в замке Бенатки, Марс недавно вышел из противостояния с Солнцем, была подготовлена таблица противостояний, наблюдавшихся с 1580 года, и разработана теория, которая очень хорошо отображала долготы в противостоянии, а остальные ошибки составили не более 2′ [Полудиаметр большего эпицикла был 0,1638, меньшего – 0,0378, или в птолемеевской теории эксцентриситет экванта равна 0,2016].

Но теория не могла отобразить широты и годовые параллаксы, и Кеплер стал задумываться, не оказалась ли она в конце концов ошибочной, даже если и представляла долготу в противостоянии с такой точностью. Несколько частностей в теории вызывали возражения у Кеплера. В первую очередь Браге, как и Коперник, определял движение планет относительно среднего положения Солнца. Кеплер отверг этот принцип в своей книге, так как он предполагает движение вокруг математической точки, а не вокруг огромного тела Солнца. Но этот принцип вызывает возражение и с практической точки зрения. Из наблюдений во время противостояния было вычислено время, когда Марс на 180° отходит от средней долготы Солнца, и, значит, движение Солнца (или, вернее, Земли) следовало считать известной величиной. Поэтому в какой-то степени большое преимущество использования противостояний (что наблюдаемые долготы равны гелиоцентрическим долготам) сходило на нет, и «первое неравенство» не определялось независимо от «второго», вызванного движением Земли или, в системе Браге, Солнца. В случае Марса долгота в «среднем противостоянии» могла отличаться более чем на 5° от долготы в фактическом противостоянии – весьма серьезное расхождение.

В конце концов Кеплеру удалось убедить Браге и Лонгомонтана принять видимое положение Солнца для теории Луны, тогда как его собственное длительное исследование Марса все больше и больше внушало ему необходимость определять движение планеты относительно истинного положения Солнца.

Другое возражение Кеплера против теории Марса Браге состояло в том, что годовая орбита Солнца предполагалась простым эксцентрическим кругом (как в теории Птолемея и Коперника) с эксцентриситетом равным 0,035 84. В «Тайне мироздания» Кеплер высказался в том смысле, что когда-нибудь будет установлено, что все планеты, в том числе Земля, движутся совершенно одинаковым образом. Теперь же он указал Браге на то, что видимое попеременное сокращение и расширение годовой орбиты Земли (или Солнца), которое установил Браге в 1591 году, вызвано тем простым фактом, что движение на этой орбите неоднородно по отношению к центру, но по отношению к точке экванта – точно такое, как в планетных теориях Птолемея. В данном случае легко увидеть, что годовой параллакс, или разница между гелиоцентрической и геоцентрической долготой планеты, будет меняться в зависимости от ее положения относительно линии апсид Земли. Если Марс находится на продолжении этой линии и наблюдается с двух точек на равных расстояниях по обе стороны от линии, то параллаксы будут равны, независимо от того, где на этой линии расположена точка экванта. Но если Марс находится примерно в 90° от апсид Земли и наблюдается из апсид или с двух точек в средних аномалиях а и 180° – а, параллаксы не будут равны, если только точка экванта не находится в центре орбиты, но будут отличаться в большей или меньшей степени в зависимости от того, ближе или дальше Земля от апсид. Браге, видимо, подозревал, что это и есть истинное объяснение странного явления, но, так как он хотел, чтобы его книга (Progymnasmata) все-таки увидела свет без очередных задержек, он не ввел в нее бисекцию солнечного эксцентриситета, и Кеплер лишь упоминает об этом в приложении, которым закончил книгу уже после смерти Тихо Браге.

Тихо Браге умер 24 октября 1601 года и на смертном одре попросил Кеплера продолжить реформу теоретической астрономии, которую он обдумывал, на основе его геогелиоцентрической системы, а не коперниковской. Хотя реформаторские усилия Кеплера в конечном итоге привели лишь к окончательному утверждению системы Коперника, все же он добросовестно продемонстрировал теорию Марса в соответствии с тремя системами: Птолемея, Браге и Коперника, помня последнее желание великого астронома-практика, чье удивительное предвидение обеспечило неисчерпаемый кладезь наблюдений, сделанных во всех мыслимых условиях. Еще до смерти Браге Кеплер добился существенного прогресса в работе о Марсе [В письме Маджини от 1 июля 1601 года он описал применение четырех противостояний для нахождения апсид], а четыре года спустя она была закончена. С этого момента мы будем следить за его исследованиями в том порядке, в котором он сам их зафиксировал.

Для начала показав, что из наблюдений Браге нельзя сделать никаких определенных выводов относительно горизонтального параллакса Марса, за исключением того, что он не превышает 4′, а вероятно, гораздо меньше, Кеплер далее находит те элементы орбиты, которые можно определить отдельно. Долготу восходящего узла он установил, перерыв бумаги Браге в поисках наблюдений планеты в моменты, когда у нее не было широты, и затем рассчитал ее гелиоцентрическую долготу по теории Браге. Шесть наблюдений такого рода дали ему долготу восходящего узла, равную 46⅓°. Далее он тремя методами определил наклон орбиты к плоскости эклиптики.

Во-первых, выбрав наблюдения Марса в 90° от узлов, сделанные в момент, когда расстояние от Земли до Марса равно расстоянию от Марса до Солнца, в то время как наблюдаемая широта равна наклону. Во-вторых, взяв планету в тот момент, когда она находится в квадратуре к Солнцу, а Земля и Солнце находятся на линии узлов; наблюдаемая широта при этом опять-таки равна наклону.

В-третьих, по методу Коперника, воспользовавшись широтами, наблюдаемыми в момент противостояния. Первый и третий способ предполагают, что отношение размеров орбит известно, тогда как второй метод совершенно не зависит от какой-либо прежней теории, и Кеплеру удалось найти четыре наблюдения, удовлетворяющие условиям второго способа. Этими способами он нашел наклон равным 1°50′ и доказал, что плоскость орбиты проходит через Солнце и что наклон является постоянным, так что колебания орбиты, до той поры считавшиеся необходимыми, в действительности не существуют. Именно тогда, провозгласив это важное открытие, он и сказал те слова, что Коперник сам не осознавал открытых им богатств.

Следующим и самым важным шагом было определение положения линии апсид (долготы афелия), эксцентриситета и средней аномалии в ту или иную дату. Для определения этих трех величин Птолемею требовались только три противостояния, так как он исходил из бисекции эксцентриситета (на рисунке CA = CS), но, так как Кеплер твердо решил, следуя за Коперником и Браге, не делать подобных допущений, ему пришлось использовать четыре противостояния. Из десяти противостояний, наблюдавшихся Браге (к которым он смог добавить еще два, которые наблюдал сам в 1602 и 1604 годах), он выбрал относящиеся к 1587, 1591, 1593 и 1595 годам и вывел из них время истинного противостояния.
Изображение

На рисунке D, G, F, E – это четыре наблюдаемых положения Марса, S – Солнце, G – центр круговой орбиты, A – точка экванта, HI – линия апсид. Положение этой линии и средняя аномалия первого противостояния, то есть углы HSF и HAF, в первом примере заимствованы из теории Браге. Наблюдения дали непосредственно гелиоцентрические долготы, то есть углы при S между линиями SF, SE, SD и SG, тогда как углы при A, разности средней аномалии, были известны, так как период сидерического обращения давал среднее движение. Из треугольников ASF, ASE, ASD и ASG, в которых углы при AS известны, далее рассчитываются расстояния SF, SE, SD и SG, выраженные в частях AS. Из треугольников SFE и SFG находится угол F четырехугольника FEDG и аналогичным образом три других угла E, D, G. Если теперь четыре точки F, E, D, G лежат на окружности круга, у нас должно быть
F+ D = G + Е = 180°.

Когда это условие выполняется, нужно найти, находится ли центр круга на линии AS. В треугольнике SFG мы можем посчитать длину FG, так как мы знаем угол при S и другие две стороны; в равнобедренном треугольнике FCG мы теперь знаем FG и угол FCG, причем последний равен удвоенному FEG (или удвоенной сумме FES и SEG), значит, мы можем найти два радиуса в частях AS и угол CFG. Далее, угол SFO = SFG – CFG, следовательно, мы в треугольнике CSF мы можем найти сторону CS и угол CSF, и у нас должно получиться
GSF = HSF.

Поэтому необходимо изменить предполагаемое направление Ш или углы HSF и HAF (истинная и средняя аномалия первого противостояния) так, чтобы выполнялись оба условия, то есть пока четыре точки не будут лежать на круге, центр которого находится на линии, соединяющей S и А.

Кеплер верно говорит, что, если читатель находит это описание метода утомительным, ему следует пожалеть автора, который проверил его не меньше семидесяти раз, и ему не следует удивляться, что Марс потребовал более пяти лет, хотя почти целый 1603 год был потрачен на оптические исследования. Результатом семидесяти этих попыток стала (радиус круга = 1)
Долгота афелия 28°48′55″ Льва [341] (1587 г.)
АС = 0,072 32 CS= 0,113 32.

Эту теорию Кеплер впоследствии назвал «заместительной гипотезой». Она очень хорошо отображала долготы двенадцати противостояний, и наибольшая остаточная ошибка составляла 2′12″, которая, как полагал Кеплер, происходила в основном из-за ошибок наблюдений, так как видимый диаметр Марса в ближайшем к Земле положении казался весьма значительным. И все же теория оказалась ложной, и Кеплер полагал, что, когда Птолемей допустил бисекцию эксцентриситета (АС = CS), он должен был встретиться с аналогичной трудностью, которая, вероятно, заставила и Браге отложить в сторону теорию Марса и заняться вместо нее теорией Луны. Кеплер проверил теорию на широтах противостояний 1585 и 1593 годов, когда Марс находился вблизи пределов наибольшей северной и южной широты и в то же время вблизи афелия и перигелия. Применив солнечную теорию Браге без изменений, он обнаружил, что эксцентриситет получится = 0,080 00 или = 0,099 43, в зависимости от того, что использовалось – истинное или среднее противостояние, и результат очень отличается от 0,113 32, но не очень от ½ (АС + CS) = 0,092 82. Поэтому он попробовал, что будет, если принять АС = CS = 0,092 82, но это оказалось неудачным шагом, так как, хотя места примерно в 90° от апсид были хорошо представлены, места в аномалиях 45°, 135° и т. д. отличались примерно на 8′. Теперь понятно, говорит Кеплер, почему Птолемей закрыл глаза на бисекцию эксцентриситета, так как 8′ вполне укладывались в пределы точности его наблюдений (10′); но Божья благодать одарила нас самым добросовестным наблюдателем в лице Тихо Браге, и потому мы должны с благодарностью использовать этот дар, чтобы найти истинные движения небесных тел.

Еще одно доказательство ошибочности «заместительной гипотезы» предоставило исследование долгот вне противостояний, но вблизи апсид. Они также дали эксцентриситет около 0,09. Таким образом, заместительная гипотеза, которая стоила такого огромного труда, окончилась полным провалом. И это показало, что либо орбита представляет собой не круг, либо, если это все же круг, внутри его нет неподвижной точки, при взгляде из которой планета перемещается равномерно, но что точка экванта должна колебаться взад-вперед по линии апсид, что не могло быть следствием какой-либо естественной причины.

Доказав таким образом невозможность создания правильной теории на одних противостояниях, Кеплер осознал, что проблему надо решать в более общем виде, а не разбираться с первым и вторым неравенствами по отдельности, как поступали его предшественники. Он решил взяться сначала за второе неравенство путем более строгого изучения годовой орбиты Земли. В «Тайне мироздания» он попытался объяснить, что планета движется быстрее всего в перигелии и медленнее всего в афелии, потому что в этих точках она ближе всего к Солнцу и наиболее удалена от него, и поэтому, соответственно, находится под наибольшим и наименьшим влиянием некой исходящей от Солнца силы. Но он признал, что если бы это объяснение было правильным, то Земля должна была бы двигаться точно таким же образом, как планеты, но все же никто не приписывал экванты годовой орбите и не представлял ее какой-либо иной формы, кроме простого эксцентрического круга. Поэтому Кеплер испытал настоящее счастье, когда его озарило (dictabat mihi genius, как он говорит), что видимое изменение диаметра годовой орбиты должно вызываться тем, что центр равных расстояний и центр равного углового движения совпадали у Земли не больше, чем у орбит планет. Но теперь это следовало строго доказать.

Доказав сначала реальность предполагаемого явления с помощью двух наблюдений Марса в той же гелиоцентрической долготе, сделанных в те моменты, когда разницы гелиоцентрических долгот планеты и Земли были равны, показав, что параллаксы вместо того, чтобы быть равными, отличаются на 1°14,5′, Кеплер определил эксцентриситет орбиты Земли с помощью наблюдений Марса в одной точке его орбиты, сделанных из нескольких точек орбиты Земли. В треугольнике между Солнцем (S), Землей (Е) и проекцией Марса на плоскости эклиптики (М) углы при S и Е известны, гелиоцентрическая долгота Марса взята либо у Браге, либо из заместительной теории; из них было найдено отношение сторон SE к SM. Аналогичным образом можно было установить отношение других радиус-векторов к SM, выбрав другие наблюдения Марса, сделанные по прошествии ровно одного или нескольких периодов сидерического обращения, и тогда нахождение радиуса круга, расстояния до S от центра и направления диаметра через S, то есть линии апсид, превращалось в простую геометрическую задачу. Из тех же наблюдений и таким же образом он определил расстояние от точки экванта до центра круга, и это расстояние, как и расстояние до Солнца от центра, было найдено равным приблизительно 0,018 00 (радиус = 1), или почти половине эксцентриситета Браге, так что уверенное подозрение Кеплера, что его следует разделить надвое и что Земля вращается точно по тем же принципам, что и планеты, полностью подтвердилось [В главе 28 Кеплер проверяет результат, находя гелиоцентрическую долготу и расстояние от Солнца до Марса из различных сочетаний, приняв е = 0,018 для Земли]. Меньшее значение эксцентриситета прекрасно согласовалось с очень малым изменением видимого диаметра Солнца в течение года, при этом обнаружилось, что разница между уравнением центра, вычисленного по старой и новой теории, оказалась незначительной и составила не более чем несколько секунд.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Кеплер (3)

Новое сообщение ZHAN » 28 янв 2019, 09:23

Подтверждение идеи Кеплера о сходстве движения Земли и планет естественно побудило его вернуться к гипотезе, высказанной в «Тайне мироздания», что это движение вызывает некая исходящая от Солнца сила; и так как действие подобной силы непременно должно так или иначе изменяться с изменением расстояния до Солнца, он пришел к мысли о переменной скорости планеты на протяжении всей ее орбиты. Таким образом, в конце концов Кеплеру удалось избавиться от птолемеевского экванта и заменить его законом, который впоследствии стал известен как второй закон Кеплера, хотя в действительности он был открыт первым. Поскольку орбиты планет расположены практически в одной плоскости, то есть плоскости эклиптики,

Кеплер предположил, что сила (virtus) действует только в плоскости орбит и, следовательно, просто обратно пропорциональна расстоянию. То же самое имеет место с орбитальной скоростью, и, значит, небольшое время, за которое планета проходит по очень малой дуге орбиты, пропорционально радиус-вектору. Кеплер доказывает это для окрестности апсид в птолемеевском эксцентрическом круге и без дальнейших изысканий предполагает, что это верно для любой точки орбиты; и даже позже, признав, что орбиты имеют эллиптическую форму, он продолжал считать доказательство верным как нечто само собой разумеющееся. Сейчас нам известно, что в этом он был не прав, так как скорость в любой точке пропорциональна перпендикуляру из фокуса к касательной в рассматриваемой точке, так что теорема Кеплера верна только для апсид, где радиус-вектор перпендикулярен касательной. Но изъян в рассуждениях Кеплера любопытным образом компенсируется другим изъяном в выведении закона. Так как время, за которое планета проходит по очень малой дуге, пропорционально радиус-вектору, сумма отрезков времени, за которое планета проходит сумму малых дуг, образующих конечную дугу орбиты, будет пропорциональна сумме всех радиус-векторов, то есть (как он думает) площади сектора, описываемого радиус-вектором. Это второй недостаток, так как сумма бесконечного числа линий, находящихся бок о бок, не составляет площади, и это Кеплер должен был прекрасно понимать.

Тем не менее теория всемирного тяготения доказала истинность знаменитого второго закона Кеплера, а именно что время, требующееся, чтобы описать дугу орбиты, пропорционально площади сектора, описываемого радиус-вектором. Однако способ, которым Кеплер вывел свой закон, был отнюдь не бесспорным. Он так и не узнал об ошибке в своем законе расстояний, но понимал, что сумма нескольких радиус-векторов неверно измеряет площадь сектора; но все-таки, обнаружив, что средние аномалии можно точно рассчитать по его второму закону, причем они будут согласоваться с наблюдениями, и не только для орбиты Земли, к которой он сначала применял его, но и для эллиптической орбиты Марса, он справедливо посчитал это твердо установленным фактом. Однако Марс по-прежнему причинял Кеплеру немало хлопот, поскольку, когда он из наблюдений вблизи перигелия и афелия вывел новые значения элементов, сравнение с наблюдаемыми местами в других частях орбиты вновь выявили вопиющие ошибки, которые в октантах достигали 8′.

Этот последний результат заронил в Кеплере подозрение, что форма орбиты не круговая, и показал необходимость продолжать исследования без каких-либо предвзятых допущений относительно формы орбиты. Однако ее можно было бы определить при известных расстояниях от Марса до Солнца в разных частях орбиты. Поэтому Кеплер вычислил три расстояния на основании гипотезы о круговой орбите и наблюдений. Результат оказался таков:
Изображение

Поскольку наблюдаемые расстояния оказались меньше, чем рассчитанные из эксцентрического круга, следовал естественный вывод: орбита представляет собой не окружность, а кривую, которая, кроме как в апсидах, целиком лежит внутри круга. Это также объясняет, почему применение закона площадей дало результат, показывающий, что планета движется слишком быстро вблизи апсид и слишком медленно на среднем расстоянии, так как площади секторов круга везде, кроме как вблизи апсид, больше, чем у кривой, лежащей внутри круга. Поэтому Кеплер пришел к выводу, что «орбита планеты является не кругом, но овалом». В апсидах этот овал совпадает с кругом, а в аномалиях 90° и 270° больше всего отклоняется от круга, причем овал имеет яйцевидную форму, более широкую в афелии и более заостренную в перигелии. Чтобы объяснить эту примечательную форму орбиты, Кеплер разложил движение планеты на движение по эксцентрической окружности и движение по эпициклу. Он предположил, что планета обладает некой силой, противостоящей силе, исходящей от Солнца, которая толкает ее вперед, так что она описывает эпицикл попятным движением, а также он предположил, что планета движется неравномерно (в соответствии со вторым законом) на эксцентре, но равномерно на эпицикле.
Изображение

Таким образом, Кеплер окончательно распрощался с гипотезой о круговой орбите, но зато столкнулся с большими трудностями при работе с яйцевидной орбитой и ее квадратурой, так что ему пришлось прибегнуть к приближенным методам. Заместительная теория с достаточной для этой цели точностью давала гелиоцентрическую долготу, то есть направление радиус-вектора; осталось только определить длину. Поэтому линия от перигелия до афелия (IH) сначала была поделена на неравные части, так что АС = 0,072 32 и SC = 0,113 32, где S — Солнце. Затем угол ХАМ был сделан равным средней аномалии, а из С проведена линия SM′, равная по длине среднему расстоянию Марса. Тогда SM′ будет истинным гелиоцентрическим направлением Марса.

Затем AS делится надвое в точке В, и ВР проведена параллельно AM, так что НВР – это средняя аномалия, тогда окружность вокруг B даст расстояние. На BP отмечен отрезок BМ″, равный среднему расстоянию, тогда SM″ – истинная длина радиус-вектора, и если сделать SМ‴ = SМ″, то М‴ (расположенная на линии SМ′) будет истинным местом планеты.

Для нахождения площадей секторов овала Кеплер заменил овал эллипсом, причем наибольшая ширина лунки между ним и эксцентрической окружностью равна 0,008 58 [Это квадрат 0,092 64. Солнце не находится в одном из фокусов этого вспомогательного эллипса]. Это также дало ошибку примерно в 7′ в октантах, но со знаками противоположными знакам эксцентрической окружности показав, что истинная орбита находится где-то между окружностью и вспомогательным эллипсом [Кеплер приводит таблицу, содержащую эксцентрические аномалии 45°, 90°, 135°, истинные аномалии при целом е и поделенном надвое, в заместительной гипотезе и «физической теории», круговой и эллиптической. Вспомогательный эллипс весьма близко согласуется с теорией Птолемея].

После ряда других бесплодных экспериментов он вычислил двадцать два расстояния от Марса до Солнца с помощью новой гипотезы. Эти вычисления демонстрируют, что он правильно определил линию апсид, и самым убедительным образом доказывают, что на самом деле она проходит через тело Солнца, как он всегда утверждал, а не через среднее Солнце. Но расстояния оказались слишком малы, с разницей 0,006 60 примерно в месте среднего расстояния. Поэтому истинная орбита со всей ясностью оказалась расположена между кругом и овалом.

Ширина лунки между орбитой Марса и эксцентрической окружностью наконец дала долгожданный ключ к тайне движения планеты. Она составляла 0,006 60, при полудиаметре окружности 1,523 50, или 0,004 32, если полудиаметр равен 1. Это почти равно 0,004 29, или половине ширины лунки в теории овала. По чистой случайности, как признает Кеплер, он заметил, что 1,004 29 равно секансу наибольшего оптического уравнения Марса, то есть секансу угла (5°18′), тангенс которого равен эксцентриситету. «Я как будто пробудился ото сна, и меня озарило новым светом». На средних расстояниях оптическое уравнение является максимальным, и там сокращение расстояний оказывается наибольшим, превышая единицу на 1,004 29. Этот результат Кеплер распространил на все точки орбиты, заменив всюду радиус-вектор эксцентрической окружности на одинаковую величину, умноженную на косинус оптического уравнения, или distantia diametralis, как он это называет. Сравнение ряда расстояний, вычисленных по этому правилу, с результатами, получившимися из наблюдений Браге, показало, что это предположение вполне оправданно. Так было сделано великое открытие, что радиус-вектор Марса всегда представлен уравнением

г = а + ае cos Е,
где а — среднее расстояние, а Е — эксцентрическая аномалия, отсчитанная по старому обыкновению от афелия, тогда как ае — расстояние между Солнцем и центром орбиты.

Хотя фактически цель была достигнута, в последнюю минуту Кеплер все же нашел новые неприятности на свою голову. Уменьшение радиус-вектора по мере удаления планеты от афелия позволило предположить либрацию планеты по диаметру эпицикла, движущегося по окружности, концентрической с Солнцем. Но хотя это могло представить вышеприведенное уравнение, то есть длину радиус-вектора, попытка вычислить таким способом соответствующую истинную аномалию привела к ошибкам в 4′ или 5′. Это заставило Кеплера вернуться к эллипсу, который он уже использовал в качестве замены овалу, и наконец он доказал, что эллипс с Солнцем в одном из фокусов дает длину радиус-вектора, согласующуюся с вышеописанным уравнением, тогда как его направление получается из
r cos υ = ае + а cos Е.

Большая проблема в конце концов была решена, проблема, которая сбила с толку гениального Евдокса и оказалась камнем преткновения для александрийских астрономов, так что Плиний даже назвал Марс «звездой, не поддающейся наблюдению». Многочисленные наблюдения Тихо Браге, сделанные с недостижимой дотоле точностью, в умелых руках Кеплера выявили неожиданный факт, что Марс описывает эллипс, в одном из фокусов которого находится Солнце, а радиус-вектор планеты охватывает равные площади в равные промежутки времени. Гений и поразительное терпение Кеплера доказали не только то, что эта новая теория удовлетворяет наблюдениям, но и то, что никакую другую гипотезу невозможно согласовать с наблюдениями, так как все предлагаемые альтернативы сохраняют вопиющие ошибки, которые никак невозможно было отнести на счет ошибок наблюдения.

Таким образом, Кеплер, в отличие от всех своих предшественников, не просто выдвинул новую гипотезу, которая могла, как и другая, позволить математику-расчетчику составить таблицы движения планет; он нашел фактическую орбиту, по которой планета летит через пространство. В пятой и последней части своей книги о Марсе он наконец показал, как идеально новая теория отображает наблюдаемые широты. Долготы уже доставили немало хлопот предыдущим теоретикам, но широты были просто безнадежным случаем и доводили астрономов до самых необоснованных предположений, например об орбитальных колебаниях. Теперь, когда был установлен истинный характер орбиты и доказано, что ее плоскость пересекается с плоскостью орбиты Земли на линии, проходящей через Солнце, все стало ясно, и многие до той поры необъяснимые явления сразу оказались объяснены. Среди них был и тот факт, что широта не всегда максимальна точно в момент противостояния, и Кеплер цитирует и рукописи Браге, и свои беседы с ним, чтобы показать, какое беспокойство это вызывало у великого астронома-практика. Теперь проблема превратилась в вопрос: меняется ли быстрее всего синус гелиоцентрической широты или расстояние между Марсом и Землей, и так астрономы-теоретики освободились еще от одного источника затруднений.

Открытие эллиптической орбиты Марса стало абсолютно новой отправной точкой, так как наука отказалась от принципа равномерного кругового движения, принципа, который издавна считался самоочевидным и неприкосновенным, хотя еще Птолемей молчаливо опустил его, введя эквант. Поэтому пытливый ум Кеплера не мог не попытаться объяснить, почему планета описывает эллиптическую, а не круговую орбиту.

В «Тайне мироздания» Кеплер предположил существование anima motrix у Солнца и теперь начал дальше развивать эту идею. Эта сила исходит от Солнца, но, в отличие от света, распространяется не во все стороны, а только в плоскости, близко к которой расположены плоскости всех планетных орбит, так что она просто уменьшается по мере увеличения расстояния. Скорость движения планеты по орбите, следовательно, изменяется обратно пропорционально расстоянию, и эта идея, как мы уже видели, привела Кеплера к открытию его второго закона. Но правило нельзя было просто распространить с одной орбиты на другую, ведь тогда периоды обращения были бы пропорциональны квадратам расстояний. Солнечная сила производит обращение планет, потому что Солнце вращается вокруг своей оси и таким образом вместе с собой вращает прямые линии, по которым распространяется сила, с запада на восток. В результате образуется круговой поток или вихрь, который уносит планеты за собой, но их периоды обращения отличаются по причине разного сопротивления, оказываемого каждой планетой, которое зависит от ее массы. Естественно было предположить, что солнечный экватор совпадает с эклиптикой, а период вращения Солнца был определен весьма любопытным образом. Периоды обращения планет, находящихся ближе к Солнцу, короче, чем у планет, находящихся дальше, так что период вращения Солнца должен быть меньше 88 дней – периода обращения Меркурия. Кеплер предполагает, что полудиаметры Солнца и орбиты Меркурия находятся в том же соотношении друг к другу, как полудиаметры Земли и орбиты Луны, следовательно, периоды должны находиться в том же отношении, и так мы получаем период вращения Солнце равный примерно трем дням.

Несколько лет спустя, когда вскоре после изобретения телескопа были открыты солнечные пятна, Кеплер вынужден был признать [В письме Вакеру, написанном в 1612 году после того, как он прочел заявление Шемера об определении периода вращения Солнца и положения его экватора], что эта оценка и предположение о положении солнечного экватора оказались одинаково ошибочными.

Вихри, вызываемые Солнцем, увлекают планеты по круговым орбитам, концентрическим с Солнцем, и поэтому необходимо найти какую-то силу, способную превратить это круговое движение в эллиптическое. Еще до публикации книги Гильберта «О магните» Кеплер много интересовался магнетизмом, как нам известно из писем, написанных в 1599 году баварскому канцлеру Герварту фон Хоненбургу; и он неоднократно пытался найти положение магнитных полюсов Земли с помощью тех немногих определений магнитного склонения, которые были ему доступны. Сначала он считал, что северный полюс на 23°28′ отклоняется от магнитного полюса и что магнитный полюс указывает на место, где находился полюс вращения в момент сотворения, так как, когда два полюса постепенно разошлись, экватор Земли приобрел наклон относительно эклиптики. После этого на основании наблюдений, сделанных голландской экспедицией на Новую Землю, он пришел к выводу, что два полюса отстоят лишь на 6½° друг от друга, что, как ему казалось, хорошо вписывается в теорию Доменико Марии Новары, что положение земной оси изменилось на 1°10′ со времен Птолемея и за 5600 лет, прошедших с момента сотворения мира, разница составит более 5°. Хотя Кеплер после публикации книги Гильберта и после того, как он получил доступ к большему числу измерений склонения, и признал, что невозможно определить положение магнитного полюса подобными способами, он продолжал глубоко интересоваться магнетизмом, считая, что это явление способно объяснить эллиптическое движение планет.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Кеплер (4)

Новое сообщение ZHAN » 30 янв 2019, 10:11

Изображение

По Кеплеру, каждая планета имеет магнитную ось, которая всегда указывает в одну и ту же сторону и остается параллельной самой себе, так же как ось вращения Земли, не требуя «третьего движения», постулированного Коперником. Он оправдывает то утверждение, что планеты – это «огромные круглые магниты», ссылаясь на тот факт, что, как доказал Гильберт, так дело обстоит с Землей, которая, по Копернику, является одной из планет.
Изображение

Один из магнитных полюсов планеты стремится к Солнцу, а второй отталкивается им. Для начала рассмотрим положение планеты в точке А, где магнитные полюса находятся на одинаковом расстоянии от Солнца; Солнце не притягивает и не отталкивает планету, а просто движет ее. Но при этом движении планета последовательно проходит через положения В, С, D, Е, и полюс, «дружественный к Солнцу» (soli arnica), поворачивается к Солнцу, в то время как «враждебный» (discors) отворачивается от него. Поэтому в данной части орбиты планета притягивается Солнцем и продолжает приближаться к нему до положения Е, где притяжение и отталкивание снова уравновешивают друг друга. Когда планета проходит Е, враждебный полюс поворачивается к Солнцу, и поэтому планета во второй половине орбиты отталкивается Солнцем, и расстояние возрастает вплоть до достижения афелия в А. Однако ось не остается строго параллельной первоначальному направлению, но вследствие действия Солнца претерпевает небольшое отклонение, так что она указывает точно на Солнце, когда планета находится на среднем расстоянии. В верхнем квадранте, от афелия до среднего расстояния, Солнце производит этот «наклон» в течение более длительного времени, но сила его слабее, в нижнем квадранте – в течение более короткого времени, но с большей силой, fltque compensatio perfecta. Если магнитная ось после полного оборота не совсем возвращается в исходное положение, в результате происходит медленное движение линии апсид, которое наблюдается в действительности. Величина эксцентриситета отличается у разных планетных орбит в силу отличающейся интенсивности магнетизма у каждой планеты, но конечная причина состоит в том, что отношение наибольшей к наименьшей скорости должно быть гармоничным.

Планеты движутся в плоскости солнечного экватора, то есть эклиптики (не имея широты), за исключением наклона оси каждой планеты к эфирному течению, производимому Солнцем, которое отклоняет планету, как руль – корабль.

Данное Кеплером объяснение движения планет – это первая серьезная попытка истолковать механизм Солнечной системы. Он не пошел дальше понятий механики, бытовавших в XVI веке, так как он предполагает, что для продолжения движения планеты требуется постоянное воздействие некой силы и что планета остановится на месте, как только сила перестанет действовать. Активная сила магнетизма ясна и проста, и Кеплер не уставал подчеркивать это при всякой возможности. Так, тезис № 51 его маленькой полемической брошюры Tertius Interveniens (1610) утверждает, что «планеты являются магнитами и приводятся в движение вокруг Солнца магнитной силой, но живо только одно Солнце» [За несколько лет до того Кеплер колебался, следует ли целиком отождествлять движущую силу с магнетизмом, так как на Землю тоже воздействуют планетные аспекты, «percipit igitur Terra aliquid, quod sola ratio percipit. Magnetes vero a nullo rationis subjecto seu objecto moventur», из письма Бренгеру от ноября 1607 года. Но это на самом деле всего лишь увертки, потому что в других письмах он открыто называет солнечную силу «магнитным истечением» (письмо к английскому писателю-астрологу сэру Кристоферу Хейдону от мая 1605 г.) или использует аналогичные выражения].

Хотя Кеплер и достоин всяческого уважения за попытку найти причину движения по орбите, его нельзя может назвать предтечей Ньютона. В его гипотезе сила направлена не к Солнцу, а по касательной, это «не притяжение, а продвижение», как он выразился в письме Местлину в марте 1605 года. Если бы Солнце не вращалось, не обращались бы и планеты, как если бы не вращалась Земля, не обращалась бы и Луна вокруг нее; но Луна не имеет вращения, поскольку у нее нет спутника, «поэтому в случае Луны вращение было опущено по причине ненужности». Но Юпитер и Сатурн должны вращаться вокруг своей оси, поскольку у них есть спутники [Спутники Сатурна еще не были открыты, но о таинственных «придатках» (плохо различимых кольцах) часто говорили как о спутниках]. Вращение планеты частично вызывается силой Солнца, но в основном силой, присущей самой планете; так, Земля вращается 365 раз за один оборот вокруг Солнца, из которых Солнце производит пять, тогда как Земля без его влияния вращалась бы лишь 360 раз.

Таким образом, мы видим, что гравитация не имела места в теории небесной механики Кеплера. И тем не менее его идеи о тяготении в значительной мере превосходят представления, господствовавшие еще со времен Аристотеля. Как обычно, мы находим зачатки его идей в «Тайне мироздания»:
«Никакая точка, никакой центр не имеет тяжести, но все, имеющее ту же телесную природу, будет стремиться к нему; центр также не приобретает вес, притягивая к себе другие вещи или будучи объектом их стремления, как и магнит не становится тяжелее, когда притягивает к себе железо».
В предисловии к книге о Марсе «истинное учение о тяготении» излагается в следующих аксиомах. Любое физическое вещество покоится в том месте, в котором оно помещено изолированно от действия силы другого тела того же рода (extra orbem virtutis cognati corporis). Тяготение является взаимной тенденцией родственных тел к соединению друг с другом (к тому же роду относится магнитная сила), так что Земля притягивает камень гораздо сильнее, чем камень притягивает Землю. Если предположить, что Земля находится в центре мира, то тяжелые тела не стремятся к центру мира как таковому, но к центру круглого родственного тела – Земли; и куда бы ни перемешалась Земля, тяжелые тела всегда будут к ней стремиться; но если бы Земля не была круглой, они бы не стремились со всех сторон к середине, но с разных сторон увлекались бы к разным точкам. Если бы два камня находились в любом месте пространства друг рядом с другом, но вне досягаемости третьего родственного тела, они бы, подобно двум магнитным телам, соединились в промежуточной точке, причем каждый приблизился бы к другому пропорционально притягивающей массе. И если бы Земля и Луна не удерживались на своих орбитах их одушевляющей силой (vi animali), то Земля поднялась бы к Луне на 1/54 долю расстояния, в то время как Луна опустилась бы на остальную часть пути и соединилась бы с Землей, при условии что оба тела имеют одинаковую плотность. Если бы Земля перестала притягивать воду, все моря поднялись бы и перетекли на Луну. С другой стороны, virtus tractoria Луны достигает Земли и производит приливы, о которых и их влиянии на формирование заливов и островов Кеплер много рассуждает, но эти рассуждения мы здесь опустим.

Поразительно, как точно удалось Кеплеру ухватить близкое сходство между гравитацией и магнетизмом – с одной стороны, и между движущей силой Солнца и магнетизмом, с другой. И все же он не смог увидеть тождественности силы тяготения и силы, удерживающей планеты на орбитах. Это тем более примечательно, что в примечаниях к своему Somnium, «Сну», написанному между 1620 и 1630 годами, Кеплер открыто приписывает приливы тому, что «тела Солнца и Луны притягивают воды моря с определенной силой, подобной магнитной». Он признавал, что притяжение Солнца (а не только исходящей от него тангенциальной силы) может достигать Земли. Но на этом он остановился и не мог пойти дальше, не пересмотрев всю свою концепцию причин движения тел.

Кеплер был очень плодовитым автором, и не только книг, но и писем, и, так как он писал очень открыто о своей работе и так как его переписка, к счастью, сохранилась, мы можем проследить ход его исследований из года в год. Так, в июле 1600 года он писал Герварту, что два предположения, сделанные в «Тайне мироздания», уже подтвердились: использование истинного места Солнца вместо среднего и существование экванта в солнечной орбите. 1 июня 1601 года он описал Маджини, как использовал четыре противостояния, и объяснил, что неравенства низших планет возникают из движения Земли, что наклоны постоянны и что теории всех семи планет должны быть схожими.

В первой половине 1602 года он обнаружил, что орбита Марса имеет овальную форму; но 1603 год он почти полностью посвятил своей книге по оптике и к работе с Марсом вернулся не раньше начала 1604 года, как мы узнаем из письма Лонгомонтану от следующего года, где Кеплер добавляет, что он пока еще ясно не увидел причину овальной формы орбиты кроме того, что это было связано с исходящей от Солнца силой; к тому времени у него была написана пятьдесят одна глава. Главы LIII—LVIII были написаны около мая 1605 года, а до конца года – глава LX, которой он завершил теорию движения по долготе, а остальные десять глав о широте, видимо, были написаны не раньше 1606 года. В декабре 1606 года император пожаловал 400 флоринов на печать, и они были действительно выплачены, что в то время нечасто случалось с императорскими пожалованиями. Рукопись была отправлена в печать в сентябре 1607 года, и книга увидела свет в июле или августе 1609 года [На титульном листе нет имени издателя, и книга продавалась только частным образом] под названием Astronomia nova aixioXoyr|TO(; seu Physica Coelestis, tradita commentariis de motibus stellae Martis. Ex observationibus G.Y. Tychonis Brahe («Новая астрономия, причинно обоснованная, или небесная физика, основанная на комментариях к движениям звезды Марс, наблюдавшихся достопочтенным Тихо Браге»).

В истории астрономии есть еще только два других столь же важных труда: это «О вращении небесных сфер» Коперника и «Начала» Ньютона. «Астрономия без гипотез», которую требовал Раме, наконец-то появилась, и Кеплер с полным правом мог заявить (на обратной стороне титульного листа), что, если бы Раме был еще жив, он мог бы претендовать на награду за это достижение – профессорскую должность, которую занимал Раме.

Среди корреспондентов Кеплера одним из самых достойных для обмена мыслями был Давид Фабрициус, протестантский пастор в Рестерхаве, с 1603 года в Остеле, что в Восточной Фрисландии, очень способный наблюдатель, который в 1598 году провел некоторое время с Тихо Браге в гольштейнском Вандсбеке и вновь посетил его в Праге в июне 1601 года и пробыл там несколько недель в отсутствие Кеплера [Давид Фабрициус родился в Эзенсе в Восточной Фрисландии в 1564 году и погиб от руки одного из своих прихожан в Остеле 7 мая 1617 года. Он открыл переменную звезду Мира в созвездии Кита в августе 1596 года и сразу же написал об этом Браге. Кеплер считал, что как астроном-наблюдатель он уступает лишь Тихо Браге. Сын Фабрициуса Иоганн первым наблюдал пятна на Солнце]. Их переписка продолжалась с 1602 по 1609 год, и Кеплер держал Фабрициуса в курсе хода его работы над Марсом [Письма находятся в числе рукописей Кеплера в Пулкове].

Фабрициус был приверженцем системы Тихо Браге и так и не сумел осознать, что по существу она не отличается от системы Коперника, и поэтому всегда пытался определить абсолютное движение Марса относительно Земли, вместо того чтобы спокойно исследовать его гелиоцентрическое движение. В 1602 году Кеплер рассказал ему о заместительной гипотезе, а в июле 1603 года перевел специально для Фабрициуса свой метод определения расстояний в систему Тихо Браге и сообщил о важном открытии, что орбита Марса представляет собой овал. Он даже рассказал ему о приближенном методе, который применил для нахождения направления и длины радиус-вектора, и неудаче с истинными аномалиями (desperata res erat). Затем последовали несколько писем, в которых Фабрициус приводил различные возражения против полученных Кеплером результатов относительно Солнца и Марса, на которые Кеплер пространно ответил в феврале 1604 года. Потом наступила пауза, пока Фабрициус в письме от 27 октября 1604 года не объявил, что, сравнив данные со своими собственными наблюдениями, он нашел, что овальная гипотеза дает слишком малый радиус-вектор Марса для среднего расстояния. Кеплер упоминает об этом в главе LV своей книги и великодушно прибавляет, что Фабрициус, таким образом, почти опередил его в нахождении истинной теории [Это единственное упоминание о Фабрициусе в книге о Марсе].

Однако на самом деле это большое преувеличение, ибо, даже если бы Кеплер забросил свое исследование, Фабрициус никогда бы не обнаружил эллиптическую форму орбиты, которую он, более того, называл абсурдной и упорно не желал принимать, когда Кеплер ее таки открыл. И каких бы похвал ни заслуживал Фабрициус за то, что увидел недостатки овальной гипотезы, Кеплер обнаружил все то же самое еще до получения его письма и смог уже 18 декабря 1604 года сказать Фабрициусу, что орбита Марса является идеальным эллипсом [В длинном письме, законченном 11 октября 1605 года, Кеплер подробно описывает, как он нашел эллипс, и разъясняет свою магнитную теорию].

Консервативному мышлению Фабрициуса оказалось не под силу отказаться от древнего принципа сочетаний круговых движений, и поэтому он разработал свою собственную теорию, только чтобы не признавать эллиптического движения. Если на окружности круга движется эпицикл, в то время как планета движется на эпицикле в противоположном направлении с удвоенной скоростью, планета будет описывать эллипс. Фабрициус предпочел трансформировать эту конструкцию, позволив центру эксцентра совершать колебания (либрации) в своей плоскости по прямой линии, перпендикулярной к линии апсид. Таким образом он представил эллиптическое движение, но не движение по второму закону Кеплера, при этом истинная аномалия не соответствовала правильной средней аномалии. Фабрициус изложил свою теорию в письме от февраля 1608 года и записи от 2 октября 1608, но так ничего и не публиковал по этому вопросу, и Кеплер уделяет его теории лишь несколько строк в своем Epitome astronomiae copernicanae, «Кратком изложении коперниканской астрономии». Но все же Давид Фабрициус заслуживает достойного места среди теоретиков астрономии XVII века, хотя он и был одним из последних приверженцев принципа, которому вскоре суждено будет окончательно впасть в забвение.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Кеплер (5)

Новое сообщение ZHAN » 31 янв 2019, 10:19

Кеплер собирался написать систематический трактат по астрономии, подобный «Синтаксису» Птолемея, сделав для других планет то же, что сделал для Марса. Книга должна была называться «Гиппарх» в честь великого астронома. Но хотя Кеплеру удалось добиться значительного прогресса в части, касающейся движения Луны, разные обстоятельства заставили его изменить свой план, и вместо «Гиппарха» он написал более элементарный учебник Epitome astronomiae copernicanae в трех частях, первая из которых была опубликована в 1618 году в Линце, куда Кеплер переехал в 1612 году в качестве «провинциального математика»; две остальные части последовали в 1620 и 1621 годах. Этот труд предполагал, что два первых закона Кеплера, которые сначала были доказаны только для Марса, распространяются и на другие планеты. Что касается Луны, то Кеплер нашел введение эллиптического движения в теорию очень хлопотным делом вследствие изменчивости эксцентриситета, и в течение ряда лет он вносил множество изменений в свое представление наблюдаемых долгот.

Должно быть, он часто завидовал предшественникам, которые могли ввести эпицикл, чтобы объяснить каждое новое неравенство. Независимо от Браге Кеплер нашел годовое уравнение Луны. Солнечное затмение 7 марта (по новому стилю) 1598 года, а также лунное затмение в феврале и пасхальное полнолуние произошли на час с лишним позже, чем гласил составленный им календарь, а лунное затмение в августе того же года случилось раньше, чем ожидалось. Поэтому в календаре на 1599 год Кеплер предположил, что период обращения Луны относительно Солнца зимой немного длиннее, чем летом. В январе 1599 года Герварт фон Хоненбург предложил ему более полно объяснить этот вопрос, и Кеплер в своем ответе высказал гипотезу, что Луна может задерживаться в своем движении под действием исходящей от Солнца силы, которая зимой, когда Земля и Луна находятся ближе к Солнцу, больше, чем летом. Причиной этого явления может быть также то, что скорость вращения Земли зависит от расстояния от Земли до Солнца, то есть она немного быстрее зимой, так что в это время года Луне, по-видимому, требуется больше времени, чем летом, чтобы описать точно такую же дугу. Эта мысль далее развивается в Epitome. Кеплер применил такую же поправку, как и Браге, с использованием другого уравнения времени для Луны, но величину годового уравнения, которая у Браге составила 4,5′, Кеплер нашел верно: II′ [Он знал это уже в 1606 году].

Новые планетные таблицы – «Рудольфинские», над которыми Кеплер работал на протяжении многих лет, были опубликованы в 1627 году в Ульме под личным надзором Кеплера, который для этого оставил Линц и перебрался в Ульм в конце предыдущего года. Весьма характерный для благородства автора жест: прямо на титульном листе он заявил, что таблицы содержат возрожденную астрономию, задуманную и осуществленную Тихо Браге, «фениксом астрономов».

Но задолго до завершения этой работы гений Кеплера одержал еще один триумф: открытие третьего закона движения планет. Он содержится в его труде Harinonices Mundi Libri Y, «Гармонии мира», опубликованном в Линце в 1619 году в продолжение «Тайн мироздания», завершая, к удовлетворению автора, цепочку идей о гармонии мира, занимавших его ум с юности.

Надо помнить, что главным желанием Кеплера, когда он приехал к Тихо Браге в Чехию, было получить способ вычисления более точных значений средних расстояний и эксцентриситетов планет, чтобы проверить его теорию пяти правильных многогранников. Когда после многих лет кропотливого труда он вычислил расстояния на основе наблюдений Браге, оказалось, что теория лишь приблизительно верна, поскольку соседние планетные сферы неточно совпадают со сферами, вписанными в соответствующие многогранники или описанными вокруг них. Из этого Кеплер сделал вывод, что расстояния планет от Солнца берутся не просто из правильных геометрических тел, каковая идея, казалось бы, подтверждается тем обстоятельством, что максимальные и минимальные расстояния двух планет дают четыре соотношения, то есть во всей планетной системе содержатся двадцать отношений расстояний последовательно расположенных планет, в то время как геометрические тела дают только пять. Отклонение устройства мира от пяти правильных тел, а также меняющиеся расстояния между планетами в процессе их обращения являются следствием «гармонии мира», и эту гармонию следует искать в наибольших и наименьших расстояниях планет от Солнца, поскольку требуется найти закон, определяющий форму орбиты, то есть эксцентриситет. Сами расстояния не производили такого впечатления, будто между ними существует какая-либо гармония, из чего следовало, что его нужно искать в движениях планет (in ipsis motibus, non in intervallis), то есть в угловых скоростях с точки зрения общего источника движения – Солнца. В нижеследующей таблице для каждой планеты приведена гелиоцентрическая угловая скорость (суточное движение) в афелии и перигелии.
Изображение

Здесь мы можем сразу же отметить, что гармония для Кеплера – это всего лишь математическая концепция; он не воображает, будто в самом деле существует какая-то «музыка сфер»: «lam soni in coelo nulli existunt, пес tarn turbulentus est motus, ut ex attritu aurae coelestis eliciatur stridor». Суточная гелиоцентрическая угловая скорость в секундах представляет число колебаний определенного тона, но по мере изменения скорости в процессе обращения тон не остается одним и тем же, но проходит через музыкальный интервал, длина которого зависит от эксцентриситета и может быть легко определена, если за наименьшую скорость считать число колебаний, которые основной тон совершает в единицу времени. Но положение интервала должно каким-то образом зависеть от абсолютной длины радиус-вектора, поэтому нужно найти закон, связывающий среднее движение (или период обращения) со средним расстоянием, так как если бы гармония небес существовала, то из нее можно было бы вычислить среднее расстояние. Это вычисленное расстояние затем нужно согласовать с наблюдаемым. После многочисленных попыток 15 мая 1618 года Кеплер открыл свой знаменитый третий закон, гласящий, что квадраты периодов обращения любых двух планет пропорциональны кубам их средних расстояний от Солнца. Этому закону он вскоре нашел применение не только для планет, но и для четырех недавно обнаруженных спутников Юпитера.

Итак, есть три способа, которыми созвучие может проявляться в движении планет. Во-первых, отношение самого медленного движения в афелии к самому быстрому движению в перигелии является интервалом по причине эксцентриситета планетной орбиты. Из приведенной выше таблицы видно, что интервалы почти идеально созвучны, так как диссонанс меньше полутона, за исключением случаев Земли и Венеры вследствие их малых эксцентриситетов. Во-вторых, крайние точки движения двух соседних планет можно сравнить двояко друг с другом, поскольку интервал можно либо взять от самого низкого тона (движение в афелии) внешней планеты до самого высокого тона (перигелий) следующей ниже планеты или от самого высокого тона внешней до самого низкого внутренней. Первый Кеплер называет расходящимся, а второй – сходящимся интервалом, и приведенная выше таблица показывает почти идеальное созвучие в обоих случаях, за исключением интервала между орбитами Марса и Юпитера, который согласуется с тетраэдром, а не с музыкальной теорией. В-третьих, созвучие может существовать между всеми шестью планетами.

Чтобы найти, к какой октаве относятся самый низкий и самый высокий тон каждой планеты, цифры, выражающие их наибольшую и наименьшую угловую скорость, следует разделить на некую степень числа 2 для получения соотношений меньше, чем 1:2, то есть в пределах октавы. Использованный показатель 2 тогда будет указывать на то, в какую октаву входит тон.
Изображение

Принимая, что скорость Сатурна в афелии равна 0, самый низкий тон Земли также будет соответствовать ноте соль, так как эти два тона представлены значениями 1′46″ и 1′47″, практически идентичными, но это будет высокая соль, на пять октав выше. Значение для самого высокого тона Меркурия 3′0″ очень близко к 5/3 от 1′47″, тон – ми Eυ, на семь октав и большую сексту выше самого низкого тона Сатурна. Таким образом, планеты исполняют следующие мелодии:
Изображение

Это очень интересное представление эксцентриситетов планет, ведь с первого взгляда видна большая разница между почти круговой орбитой Венеры и весьма значительным эксцентриситетом Меркурия. Разрыв, как известно разделяющий орбиты Марса и Юпитера, тоже сразу бросается в глаза.

Мы бы рисковали зайти слишком далеко, если бы попытались здесь показать, как Кеплер подбирал интервалы между шестью планетами, чтобы заставить производимый ими хор звучать в абсолютно идеальной гармонии. В конце концов он получает следующие соотношения наименьшей и наибольшей скорости:
Сатурн 64 : 81
Юпитер 6561 : 8000
Марс 25 : 36
Земля 2916 : 3125
Венера 243 : 250
Меркурий 5 : 12

С этими новыми значениями он вычисляет новые эксцентриситеты, средние движения и – по своему третьему закону – средние расстояния. Совпадение этих значений расстояний с наблюдаемыми выглядит следующим образом, причем среднее расстояние от Земли до Солнца предполагается равным 1000.
Изображение

Последний столбец таблицы показывает, насколько теория пяти правильных тел согласуется с гармонией. Грани куба спускаются чуть ниже среднего расстояния Юпитера, в то время как грани октаэдра не совсем достигают среднего расстояния Меркурия; грани тетраэдра пересекают внешнюю сферу Марса, но грани додекаэдра и икосаэдра не доходят до внешних сфер Земли и Венеры. Как предполагается, это показывает, что отношения орбит, выведенные из теории правильных тел, не непосредственно, но лишь косвенно выражены в реальных планетных орбитах через гармонию.

Многие авторы выражали глубокое сожаление по поводу того, что Кеплер потратил столько времени на сумасбродные домыслы и заполнил свои книги всяческими мистическими фантазиями. Но это основано на неправильном понимании цели Кеплера в его исследовании тайн мироздания и мировой гармонии, ведь даже в своих самых смелых рассуждениях он брал за основу факты, полученные с помощью тщательных наблюдений, и ставил себе целью и получал результаты большого практического значения. Его стремлению разгадать «тайну» Солнечной системы мы обязаны гениальным открытием, что плоскости всех планетных орбит проходят через центр Солнца. Этот закон следовало бы назвать его первым законом, и неспособность Коперника его обнаружить сыграла большую роль в том, что его труд так и остался неполным. Упорство, с которым Кеплер цеплялся за свое место под руководством Тихо, о котором он сказал (и, возможно, довольно справедливо), что это был человек, неспособный жить, не подвергая себя величайшим оскорблениям [Но при этом он не устает расточать Браге похвалы в своих книгах и говорит о нем с величайшим уважением, даже когда расходится с ним во взглядах], объясняется твердой решимостью построить свою систему многогранников на прочном фундаменте надежных и систематически сделанных наблюдений. Продолжению его работы в том же направлении мы обязаны первым и вторым законом Кеплера, а работе с гармонией – третьим. Таким образом, мы видим самую тесную связь между его домыслами и великими достижениями; без первых у нас никогда не было бы вторых.

Нам еще осталось сказать несколько слов о взглядах Кеплера на другие небесные светила. Хотя он во многом сумел освободиться от понятий древних, он все же разделял их мнение, что неподвижные звезды образуют часть твердой сферы, в центре которой находится Солнце. Мысль Джордано Бруно, что звезды – это солнца, окруженные планетами, Кеплер считает неправдоподобной, так как наше Солнце, если отдалить его на то же расстояние, будет светить гораздо ярче неподвижных звезд, хотя будет казаться таким же маленьким, как и они. Одно время он полагал, что и планеты, и звезды светятся собственным светом [Среди его доводов был тот, что у Венеры не видны фазы], но, узнав из Sidereus Nuncius, «Звездного вестника», Галилея о том, что в телескопе они выглядят совершенно разными, он признал, что неподвижные звезды излучают собственный свет, тогда как планеты непрозрачны и темны, «то есть, если воспользоваться словами Бруно, первые – это солнца, а вторые – луны или земли» [Еще в 1607 году он в письме согласился с Бруно и Браге в том, что планеты подобны Земле и обитаемы].

Но в Epitome он не упоминает солнц. Там звездная сфера описывается как имеющая в толщину всего две немецкие мили, так что звезды находятся примерно на одном и том же расстоянии от Солнца. Это расстояние, по его прикидкам, равно 60 000 000 полудиаметров Земли, при условии что расстояние до Сатурна является средним геометрическим между расстоянием до звезд и полудиаметром Солнца, а также при условии, что полудиаметр Солнца равен 15 полудиаметрам Земли, а его параллакс не больше 1° – большой шаг вперед. Млечный Путь концентричен с Солнцем, так как делит небо на два полушария и почти везде предстает одинаковой ширины, так что Земля должна находиться примерно в его центре. Следовательно, Млечный Путь находится на внутренней поверхности звездной сферы.

Внутренняя поверхность сферы наполнена эфирным воздухом (aura aetherea), в котором движутся планеты. Время от времени этот воздух, или эфир, сгущается и становится непрозрачным для света Солнца и звезд, и это эфирное облако, которое мы зовем кометой, получает импульс от лучей Солнца и приводится в движение по прямолинейному пути через пространство, плывя по эфиру, словно кит или морское чудище по океану. Но образующее комету вещество постепенно разрушается под действием солнечного света и отталкивается в направлении солнечных лучей, образуя хвост, и таким образом комета вскоре растворяется. Хотя комета в течение своего существования движется по прямой (с постепенно увеличивающейся скоростью), ее путь кажется нам криволинейным по причине движения Земли. Неясно, почему он предполагает, что кометы не подвержены вихревому движению планет, с которым гораздо лучше согласовалось бы вращение вокруг Солнца, которое Браге приписывал кометам. Однако Кеплер полностью соглашался с Браге в признании того факта, что кометы являются не атмосферными явлениями, как учил Аристотель, а небесными, а также в отказе от аристотелевской доктрины неизменчивости всего, что находится в высшей области мира. Отсутствие параллакса у комет и появление новой звезды в 1572 году предоставило Браге много доводов против этого учения, а Кеплер обратил внимание на другие феномены, которые также указывали на изменения небесного вещества, как, например, необычный туман или дымка 1547 года и ореол света, видимый вокруг Солнца (корона) во время полного затмения 12 октября 1605 года. Новая звезда в созвездии Змееносца в 1604 году дала ему еще одно доказательство небесных изменений; он предположил, что она состоит из вещества, истекшего из звездной сферы, которое, когда звезда гаснет, снова возвращается в сферу [Аристотелевское учение о «подлунной» природе комет подхватил итальянский автор Шипионе Кьярамонти в своем сочинении «Против Тихо», но Кеплер разоблачил его невежество самым немилосердным образом в Tychonis Brahei Dani Hyperaspistet (1625)].

Публикация «Рудольфинских таблиц» в 1627 году стала завершающим актом плодотворной жизни Кеплера. Он умер 15 ноября 1630 года, сумев полностью освободить систему Коперника от пережитков александрийской астрономии, от которых ее автору не удалось избавиться самому. Солнечная система отныне открылась во всей своей простоте, и единственные ее члены впервые были связаны воедино законом, соединяющим расстояния с периодами обращения.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

История астрономии. Заключение

Новое сообщение ZHAN » 01 фев 2019, 12:28

Кеплер усовершенствовал систему Коперника, и осталось лишь убедить астрономов и физиков, что движение Земли возможно с физической точки зрения, и объяснить причину, почему Земля и планеты движутся по законам Кеплера. Подробно рассказать о том, как движение Земли постепенно находило признание и как великое открытие закона всемирного тяготения Ньютоном объяснило законы Кеплера, означало бы написать историю всей астрономической науки XVII века, но это не входит в цели данной темы. Мы лишь в нескольких словах обрисуем, как распространялось убеждение в том, что Земля движется и как предлагались слабые попытки модифицировать имеющиеся теории вплоть до Ньютона.

За несколько месяцев до выхода книги Кеплера о Марсе недавно изобретенный телескоп направил свой объектив к звездам, а весной следующего года (1610) Галилей опубликовал свой Sidereus Nuncius, «Звездный вестник», где впервые рассказал о замечательных открытиях, сделанных с помощью нового инструмента, в частности о горах на Луне и четырех спутниках Юпитера. В конце своей брошюры Галилей, который уже на протяжении многих лет был приверженцем системы Коперника [Когда Галилей писал свои Sermones de motu gravium, «Тезисы о движении тяжестей» (в Пизе ранее 1592 года), он, по-видимому, был сторонником системы Птолемея, поскольку говорит, что покой более соответствует Земле, нежели движение. Но 4 августа 1597 года он написал Кеплеру, что «много лет» был последователем Коперника, хотя до того публично не отстаивал истинность новой системы], публично заявил о своих взглядах, подчеркнув сходство между Землей и небесными телами и отметив, что открытие четырех лун, сопровождающих Юпитер во время его движения вокруг Солнца, положило конец загадке, почему Луна одна составляет исключение из общего правила, обращаясь вокруг планеты, а не вокруг Солнца.

Еще до конца 1610 года открытие пятен на Солнце предоставило новое и совершенно поразительное доказательство ошибочности аристотелевской доктрины о неизменности небес, в то время как открытие фаз Венеры лишило противников Коперника их излюбленного оружия. Но самым важным стало открытие, что неподвижные звезды в телескопе представляют собой лишь светящиеся точки, чем было доказано, что видимые диаметры величиной в несколько минут, приписанные им всеми предыдущими наблюдателями, не соответствуют действительности. Этот факт начисто смел очень серьезное возражение Тихо Браге о том, что звезда, не имеющая годового параллакса и тем не менее показывающая значительный видимый диаметр, должна быть невероятно громадной.

Неудивительно, что давний сторонник системы Птолемея и до той поры самый решительный противник Коперника Христофор Клавий в последнем издании своего комментария к Сакробоско (1611) заметил, что астрономам придется искать систему, которая бы согласовалась с новыми открытиями, потому что старая им уже служить не может [Кеплер упомянул его высказывание в предисловии к своему «Краткому изложению». Клавий умер в феврале 1612 года]. Однако распространенные возражения о камне, брошенном с башни, пушечном ядре, выпущенном в сторону севера или юга, по-прежнему уверенно выдвигались в опровержение тезиса о вращении Земли, и, доказав их несостоятельность,

Галилей сослужил науке важную службу. Он не провозгласил три закона движения, как это часто изображают популярные писатели, поскольку так никогда полностью и не осознал принципа инерции и не сумел понять, что тело будет и дальше само по себе двигаться по прямой линии, притом что он полагал, будто тело, описывающее круг, будет продолжать это всегда, пока на него не воздействует какая-либо сила. И хотя он таким образом не смог полностью освободиться от идей Аристотеля, заявляя о совершенстве кругового движения и даже допуская, что падающее тело описывает дугу окружности, проходящей через центр Земли, не подлежит сомнению, что его популярные объяснения должны были произвести неизгладимое впечатление на многих колеблющихся читателей. Однако в своем увлечении круговыми движениями он зашел так далеко, что совершенно проигнорировал тот факт, что планеты движутся вокруг Солнца не по концентрическим орбитам. Во всем его знаменитом Dialogo sopra i due massimi sistemi del Mondo, Tolemaico e Copernicano, «Диалоге о двух главнейших системах мира, Птолемея и Коперника», нет ни единого намека на эллиптические орбиты; он даже говорит (ближе к концу «четвертого дня»), что мы еще не в состоянии решить, как устроены орбиты отдельных планет,
«доказательством чему служит Марс, который по сей день доставляет астрономам множество хлопот; и даже теория Луны излагалась совершенно разными способами после того, как Коперник значительно изменил теорию Птолемея».
[Галилей (перед самыми этими словами) замечает, что угловая скорость Луны должна быть больше в новолуние, чем в полнолуние, так как Луна, будучи ближе к Солнцу, описывает меньшую орбиту относительно Солнца. Он сравнивал Солнце с точкой, в которой подвешен маятник, а Землю и Луну – с двумя гирями, прикрепленными к стержню маятника, причем тот, что представляет Луну, находится на разных расстояниях от точки, в которой подвешен маятник. Так как это изменяет период вибрации маятника, поэтому (заключает он) Земля движется медленнее в полнолуние, чем в новолуние. Любопытное предвосхищение идеи возмущений планетных орбит.]

Таким образом, Галилей оставил планетную теорию совершенно нетронутой, да и его мнение о природе комет не было тем, которого можно было ожидать от такого упорного противника аристотелевской физики. Браге убедительно доказал, что они являются небесными телами, но Галилей, как кажется, не вполне удовлетворен тем, что они не имеют параллакса, и считает их испарениями, которые поднялись от Земли и своеобразным манером преломляют свет. Иными словами, его мнение по этому вопросу не слишком отличается от мнения Шипионе Кьярамонти, который в своей книге Atitycho, «Против Тихо» (1621), оставил в силе аристотелевское учение о подлунной природе комет; но, с другой стороны, Галилей полностью согласен с Браге относительно того, что новые звезды относятся к небесным телам. Лишь только когда Гевелий вновь показал на основании точных наблюдений, что кометы находятся намного дальше Луны, противникам идеи, что они являются небесными телами, пришлось окончательно смолкнуть, через шестьдесят лет после смерти Браге, а параболическую форму их орбит с Солнцем в фокусе Дерфель открыл лишь в 1681 году.

О гонениях на Галилея со стороны папы и инквизиции за его публичную приверженность (невзирая на предшествующие предупреждения) коперниковской идее движения Земли рассказывалось так часто, что нам нет никакой необходимости подробно рассказывать об этом здесь. Это похоже на акт возмездия, что церковные власти особо обиделись на любопытную и совершенно ошибочную теорию приливов и отливов, которую Галилей выдвинул в «четвертом дне» своего «Диалога», отвергнув старинную идею о том, что их вызывает Луна, и заявив, что они совершенно несовместимы с системой Птолемея. Возможно, его противники побоялись, что «что-то в этом может быть», и из-за этого рассердились. С другой стороны, Галилей не особо справедливо обошелся со своими оппонентами, сделав вид, что система Птолемея – единственная альтернатива системе Коперника. Во всей книге нет ни единого намека на систему Браге, хотя мы вряд ли погрешим против истины, сказав, что около 1630 года никто, на чье мнение стоит обращать внимание, не предпочитал птолемеевскую систему системе Тихо Браге.

Богословы с самого начала взирали на систему Коперника с особой неприязнью, как римско-католические, так и протестантские. Мы уже видели, в каких резких словах Лютер и Меланхтон высказывались о ней, а из письма Кеплеру Хафенреффера, профессора богословия Тюбингенского университета, от 1598 года следует, что теория движения Земли пользовалась дурной славой среди тамошних теологов. Но пока еще теория нигде не была запрещена, вероятно, потому, что предисловие Озиандера к книге Коперника (якобы написанное самим автором) разоружало противников, выставляя теорию в качестве простого способа вычислений.

На участь Джордано Бруно едва ли могло повлиять то, что он отстаивал теорию движения Земли, поскольку выдвинутых им самых невероятных идей хватило бы на несколько десятков инквизиторских костров. Однако изобретение телескопа и выявленное с его помощью сходство между Землей и планетами высветили вопрос совершенно с иной точки зрения. Из математической гипотезы, которая не затрагивала человечество в целом, он превратился в вопрос о фактическом положении места обитания человека в сотворенном мире, о том, является ли оно (как до сих пор считалось) важнейшей или сравнительно незначительной частью Творения. В течение тысячелетий богословы шаг за шагом отступали с позиций Отцов Церкви; вавилонская система мира, предпочитаемая ими, уступила место системе Птолемея; им пришлось стерпеть антиподов и прочие мерзости; но теперь, когда нечестивые руки попытались спихнуть Землю с ее внушительного пьедестала в центре мира и заставить ее крутиться среди звезд, хотя звездами движут ангелы, а в центре Земли восседает дьявол, богословы перешли в отчаянную и яростную оборону.

Всего за несколько лет после изобретения телескопа они приняли меры; 24 февраля 1616 года советники инквизиции в Риме объявили учение о движении Земли еретическим, а 5 марта святая конгрегация торжественно постановила прекратить печать книги Коперника и комментария к Иову Диего Суньиги «до тех пор, пока они не будут исправлены» (donee corrigantur) и вообще прокляли и запретили недавно опубликованную книгу священника-кармелита Фоскарини, в которой он попытался показать, что движение Земли соответствует Писанию.

Вслед за этим в 1620 году последовало издание Monitum Sacrae Congregationis ad Nicolai Copernici lectorem, «Предостережения святой конгрегации читателю Николая Коперника», где даны инструкции об изменениях, которые следует внести в книгу «О вращении», прежде чем ее снова можно будет печатать. Изменений не очень много, и они относятся только к тем фрагментам, в которых положительно утверждается движение Земли, но при этом должна быть опущена вся восьмая глава первой книги, а также неуважительная ссылка на Лактанция. Однако не нашлось ни одного издателя, который бы выпустил труд Коперника в таком изуродованном виде. Так как указ 1620 года запретил «все прочие книги, учащие тому же», «Диалог» Галилея, естественно, тоже попал в индекс запрещенных книг в 1633 году.

В индексе 1758 года наконец исчезла оговорка, запрещающая «все прочие книги», но труд Коперника, «Краткое изложение» Кеплера, «Диалог» Галилея и некоторые другие книги не выпускались вплоть до 1822 года, так что редакция индекса 1835 года оказалась первой, в которой они не упоминаются. К тому времени уже геология стала предметом ненависти богословов, а после 1859 года теория эволюции органического мира заняла то место в теологических умах, которое когда-то занимала система Коперника.

В протестантских странах не было сделано ни одной серьезной попытки подавить учение о движении Земли, может быть, потому, что это выглядело бы сомнительно, если бы они имитировали действия ненавистной инквизиции; но там, куда достигала власть Римской курии, философам приходилось покориться, хотя некоторые из них делали это очень неохотно. К их числу принадлежит Пьер Гассенди (1592—1655), который в своих многочисленных сочинениях часто хвалит систему Коперника и говорит, что предпочел бы ее, если бы ее не объявили противоречащей Писанию, по какой причине он вынужден согласиться с геогелиоцентрической системой Браге. Он провел эксперимент с камнем, брошенным с вершины мачты движущегося корабля, и пришел к вполне справедливому выводу, что результат равно не доказывает и не опровергает движения Земли [Он говорит, что только «некоторые кардиналы» заявляют о том, что Земля находится в покое, и это не вопрос веры, но для верующих их мнение все равно имеет огромный вес]. И все же он впал в немилость у своего соотечественника Морина, яростного и непримиримого анти-коперниканца, который посвятил одно из своих полемических сочинений (Alae telluris fractae, «Сломанные крылья Земли», Париж, 1643) опровержению Гассенди.

О другом известном астрономе того же времени – иезуите Джованни Баттисте Риччоли (1598—1671) – труднее сказать, каково было его личное мнение на самом деле. В своем великом трактате по астрономии Almagestum Novum, «Новый Альмагест», изданном в двух больших томах инфолио (Болонья, 1651), бесценном труде для историка астрономии, он приводит двадцать аргументов (которые опровергает) в пользу движения Земли и семьдесят семь против него, причем многие возражения совершенно пустячные или ссылаются на факты, не имеющие никакого отношения к рассматриваемому вопросу. Он очень благосклонно говорит о Копернике и простоте его системы, но доводы из Писания и Отцов Церкви, а также действия курии, очевидно, имеют для него наибольшую значимость. Тем не менее он приводит свой собственный аргумент, который считает очень убедительным. Если тело упадет с вершины башни ниже экватора Земли (стоящей на месте), оно за четыре секунды пройдет через промежутки пространства, пропорциональные цифрам 1, 3, 5, 7; но если Земля вращается, то, по его мнению, четыре промежутка будут примерно равными и тело ударится о землю не с большей силой, чем после падения в течение одной секунды; следовательно, Земля не вращается.

Ошибочность этого аргумента показал известный математик Стефано дельи Анджели, после чего завязался ожесточенный спор между ним, Борелли и Риччоли и сторонниками последнего Манфреди и Дзерилли. Риччоли принимал систему Браге с небольшой модификацией; он принимал движение Меркурия, Венеры и Марса вокруг Солнца, но допускал, что Юпитер и Сатурн движутся вокруг Земли, так как они имеют собственные спутники, причем спутники Сатурна – это его laterones, придатки, то есть его плохо видимое кольцо, еще не признанное таковым. Остальные три планеты являются спутниками Солнца. Он считал первый закон Кеплера недоказанным, потому что совпадение теории с наблюдениями не является доказательством! [Собственная планетная теория Риччоли удивительно сложна, эксцентриситет в ней варьируется в направлении линии апсид и полудиаметр эпицикла изменяется в течение одного периода].

Конечно, у системы Коперника были и другие противники, которые отвергали ее не из страха перед церковью. Выдающимся среди них можно назвать только Лонгомонтана (1562—1647), главного ученика Тихо Браге. Лонгомонтан написал трактат с весьма уместным названием Astronomia danica, «Датская астрономия», поскольку она была главным образом основана на работе Браге, систему которого он принимал, хотя и признавал вращение Земли. Он отвергал эллиптические орбиты Кеплера, и его точка зрения полностью соответствовала взглядам XVI века.
Да правит миром любовь!
Аватара пользователя
ZHAN
майор
 
Сообщения: 52735
Зарегистрирован: 13 июн 2011, 11:48
Откуда: Центр Европы
Пол: Мужчина

Пред.След.

Вернуться в История наук и ремесел

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1